
Graph Coloring Algorithms∗

Walter Klotz

Abstract

Deterministic graph coloring algorithms of contraction and sequential type
are investigated. Sequential algorithms can be extended by backtracking to
relatively effective algorithms for the chromatic number of a graph. Incom-
plete backtracking leads to new heuristics for graph coloring.

Keywords: graph coloring, chromatic number.

2000 Mathematics Subject Classification: 05C15, 05C85.

1 Introduction

Graph coloring serves as a model for conflict resolution in problems of the
following type. Suppose that in a set V certain pairs of elements are in-
compatible. The problem is to find a partition of V into a minimal number
of subsets of mutually compatible elements. The situation is described by
a graph G = (V, E) with vertex set V and edge set E formed by all pairs
of incompatible Elements. Partitioning of V into k subsets is equivalent to
coloring the vertices of G with k colors.

A (proper) coloring of the vertices of a graph G = (V, E) is a map F : V → N,
where adjacent vertices receive distinct colors in N; that is, if uv ∈ E, then
F (u) 6= F (v). The chromatic number χ(G) is the minimum number of colors
needed for a coloring of G. A graph G is k − chromatic, if χ(G) = k, and
G is k − colorable, if χ(G) ≤ k. A color class of a coloring F contains all
vertices of the same color. The color classes of F form a partition of V into
independent subsets, i.e. subsets of pairwise non-adjacent vertices.

∗Mathematik-Bericht 5 (2002), 1-9, TU Clausthal

2 CONTRACTION ALGORITHMS 2

The problem of determining the chromatic number χ(G) is NP-complete.
Therefore, no polynomial time algorithm is known for χ(G). In this paper
we investigate several heuristics for graph coloring and a (sequential) back-
tracking algorithm for the exact value of χ(G). All heuristics considered
are deterministic, they contain no random elements. For a survey of other
heuristics see de Werra[7].

2 Contraction Algorithms

Contraction algorithms for graph coloring originate in a theorem of Zykov[8].
For non-adjacent vertices x and y we denote by G/x, y the graph resulting
from G by contracting y into x, i.e. y is deleteted and the neighborset NG(x)
of x becomes NG(x) ∪ NG(y). Moreover, G + xy is the graph with the addi-
tional edge xy.

Theorem 1.

χ(G) = min {χ(G/x, y), χ(G+xy)} for non−adjacent vertices x and y .

Proof. Let C(G) be the set of (proper) colorings of G and |F | the number of
colors used by F ∈ C(G). Then we have

χ(G) = min {|F | : F ∈ C(G)}

= min {min {|F | : F (x) = F (y)}, min {|F | : F (x) 6= F (y)}}

= min {χ(G/x, y), χ(G + xy)}. �

By multiple application of Theorem 1 graph G becomes the root of a binary
tree of graphs, the Zykov tree. The construction of the Zykov tree is finished,
when no further reduction according to Theorem 1 is possible. So the leaves
of the Zykov tree are complete Graphs Gi = (Vi, Ei). Theorem 1 implies
χ(G) = min |Vi|. This is the basis of an algorithm of Corneil and Graham[4]
for χ(G), which searches through the Zykov tree in a depth-first manner. But
despite some technical refinements this algorithm is inferior to the sequential
backtracking algorithm described in section 3.

The Zykov tree is not uniquely determined. It depends on the order, in which
non-adjacent pairs x, y are chosen. Each Zykov tree has exactly one branch
which is exclusively generated by contractions. Let Gc be the complete graph
at the end of this branch. The number of vertices, |V (Gc)|, of this graph is
an upper bound for χ(G). The longer the branch to Gc is, the better will be

2 CONTRACTION ALGORITHMS 3

this bound. So a good strategy for the selection of a non-adjacent pair x, y
to be contracted might be to retain as many non-adjacent pairs of vertices as
possible. Equivalently, the resulting graph G/x, y should have as few edges as
possible. The difference of the number of edges |E(G)| − |E(G/x, y)| equals
the number cn(x, y) of common neighbors of x and y. In the algorithm
of Brigham and Dutton[2] non-adjacent vertices with a maximal number of
common neighbors are contracted until a complete graph is achieved.

More effective and yielding better results than the algorithm of Brigham and
Dutton is the algorithm RLF (Recursive-Largest-First) of Leighton[6], see
also Hertz[5]. Here x is a fixed vertex of maximal degree. Non-neighbors y
with a maximal number of common neighbors with x are contracted into x
until x is adjacent to every other vertex. To increase effectiveness, x is then
removed and a new vertex of maximal degree in the residual graph is chosen.
Vertex x and all vertices contracted into x constitute a color class. If x has
a non-neighbor, but no non-adjacent vertex with a common neighbor, then
the graph is unconnected and x is adjacent to all other vertices of its own
component. To enforce the RLF-principle consequently, we must continue
the construction of the color class of x with a vertex of maximal degree in an
other component. This has been taken into account in our implementation
of the algorithm. The (worst-case time-)complexity of RLF is O(|V |3). One
factor |V | is due to the determination of a vertex x of maximal degree.
Traversing the non-neighbors of x in search for a vertex y with a maximal
number of common neighbors with x may cost another O(|V |2) elementary
operations. We propose the following informal code for the RLF-algorithm.

Given a graph G = (V, E) with vertex set V = V (G) and edge set E.
A coloring F : V −→ N is established and will be returned.

colornumber = 0; //number of used colors

while (|V (G)| > 0){

determine a vertex x of maximal degree in G;
colornumber = colornumber + 1;
F (x) = colornumber;
NN= set of non-neighbors of x;
while (|NN | > 0){ //find y ∈ NN to be contracted into x

maxcn = −1; //becomes the maximal number of common neighbors
ydegree = −1; //becomes degree(y)
for every vertex z ∈ NN{

cn=number of common neighbors of z and x;
if (cn > maxcn or (cn == maxcn and degree(z) < ydegree)){

y = z;

3 SEQUENTIAL COLORING 4

ydegree = degree(y);
maxcn = cn;

}
}
if (maxcn == 0){ //in this case G is unconnected

y=vertex of maximal degree in NN ;
}
F (y) = colornumber;
contract y into x;
update the set NN of non-neighbors of x;

}
G = G − x; //remove x from G

}
return F.

3 Sequential Coloring

One of the simplest coloring methods is sequential coloring SC(O) according
to a given order O = [a0, ..., an−1] of the vertices:

F (a0) = 1.
If a1, ..., ai−1 (i ≥ 1) have already received colors, let F (ai) be the smallest
color not yet used in the neighborhood of ai.

The LF-algorithm (Largest First) is based on an ordering of the vertices of
the graph G = (V, E) according to non-increasing degrees. Its complexity is
O(|V |2).

The algorithm DSATUR (Degree of Saturation) of Brèlaz[1] is a sequential
coloring algorithm with a dynammically established order of the vertices.
Suppose F is a partial coloring of the vertices of G. The degree of satura-
tion of a vertex x, degs(x), is the number of different colors at the vertices
adjacent to x. DSATUR starts by assigning color 1 to a vertex of maximal
degree. The vertex to be colored next in the sequential coloring procedure of
DSATUR is a vertex x with maximal degs(x). The complexity of DSATUR
is O(|V |3).

Definition 1. Colorings F1, F2 of G = (V, E) are equivalent, if they induce
the same partition of the vertex set V into color classes.

3 SEQUENTIAL COLORING 5

Definition 2. A coloring F of the vertices a0, ..., an−1 of the graph G is tight
with respect to the given order, if

F (ai) ≤ colors(i − 1) + 1 for all i = 0, 1, ..., n − 1,

where colors(j) denotes the number of different colors at the vertices a0, ..., aj,
resp. colors(−1) = 0.

A backtracking sequential coloring algorithm, which returns the exact value
of χ(G), was first developed by Brown[3]. Many unnecessary branches of the
search tree can be avoided by the following theorem.

Theorem 2. Every coloring F : V −→ N of the vertices a0, ..., an−1 of the
graph G = (V, E) is equivalent to a tight coloring with respect to the given
order of vertices.

Proof. We change F to an equivalent, tight coloring by renaming colors.

Suppose F (a0) = k1 > 1. If no vertex has color 1, we change color k1 to color
1, else we interchange colors k1 and 1.

Assume that we have already made F tight for all vertices a0, ... , ai−1,
i ≥ 1. Then exactly the colors 1, 2, ..., l = colors(i−1) appear at the vertices
a0, ..., ai−1.

Suppose F (ai) = k > l + 1. If no vertex has color l + 1, we change color k to
color l + 1, else we interchange colors k and l + 1. �

The original algorithm of Brown[3] was improved by Brèlaz[1]. The vertices
of the graph are stored in an array A. Initially they are ordered according
to non-increasing degrees. The order is dynammically changed. Suppose
A[0], ..., A[i − 1] have already been colored. The number of different colors
at these vertices is colors(i − 1) = li. The set of free colors at x = A[i],
U = freeColors(x), is the subset of colors in {1, 2, ..., li + 1}, which are
not present in the neighborhood of x. If an upperbound optColorNumber,
χ(G) ≤ optColorNumber, has been established by a coloring F , all colors
≥ optColorNumber can be removed from U . The vertex to be colored next
is as in DSATUR a vertex of maximal degree of saturation. It is colored with
the smallest color in U . If U is empty, a backtrack is executed.

3 SEQUENTIAL COLORING 6

BSC (Backtracking Sequential Coloring) algorithm for the determination of
the chromatic number χ(G) of the graph G = (V, E).

Find an ordering A = [a0, ..., an−1] of the vertices acording to non-increasing
degrees;
start = 0; //starting index
optColorNumber = |V | + 1; //optimal number of colors
x = A[0]; //current vertex to be colored
colors(−1) = 0; //colors(j) =number of colors at A[0], ..., A[j]
U = [1]; //Variable for the set(sequence) of free colors
freeColors(x) = U ; //set of free colors of x

while (start ≥ 0){
//x is colored in the following for-loop. Backtracking is

//necessary, if U = ∅ or if an improved coloring has been found
back = false; //boolean variable for backtracking

for (i = start; i < |V |; i + +){

if (i > start){ //for i = start x and U are already available
find an uncolored vertex x of maximal degree of saturation;
U =set of free colors of x, which are < optColorNumber;
sort U non-decreasing;

}
if (|U | > 0){

k = U [0]; //selected free color
F (x) = k; //current coloring
remove k from U ;
freeColors(x) = U ;
l = colors(i − 1);
colors(i) = max{k, l};

}
else{ //U = ∅, backtrack one position

start = i − 1;
back = true;
break; //leaving the for-loop

}
}
if (back){

if (start ≥ 0){
x = A[start]; //new starting vertex
uncolor x;

3 SEQUENTIAL COLORING 7

U = freeColors(x);
}

}
else{ //in this case the above for-loop has been passed without a break

Fopt = F ; //storing the currently optimal coloring
optColorNumber = colors(|V | − 1);
i =least index with F (A[i]) = optColorNumber;
start = i − 1;
if (start < 0){

break; //leaving the while-loop
}
uncolor all vertices A[i] with i ≥ start;
for (i = 0; i ≤ start; i + +){

x = A[i];
U = freeColors(x);
remove from U all colors ≥ optColorNumber;
freeColors(x) = U ; //the current coloring is to be improved

} //notice: here we have x = A[start], U = freeColors(x)
}

}
return Fopt.

The algorithm can be improved by some refinements. If we start the ordering
A of the vertices with a clique on the vertices A[0], ..., A[r− 1], these vertices
receive fixed colors 1,...,r. The algorithm can be stopped, if backtracking
leads to an index < r. A lower bound lb ≤ χ(G) may be established by
applying BSC to a dense subgraph. The algorithm may then be finished, if
a coloring is found, which uses no more than lb colors. We call a vertex x a
merging vertex with respect to a free color k of x, if all uncolored neighbors
of x are adjacent to a vertex with color k. In this case we may reduce
freeColors(x) to {k}.

From BSC we gain the heuristic IBSC(k) by restricted backtracking (In-
complete Backtracking Sequential Coloring), where each vertex may only be
k-times the new starting vertex after backtracking. For k ≥ 1 the complexity
of IBSC(k) is O(k|V |4).

4 RUNTIME COMPARISONS 8

4 Runtime Comparisons

We have generated 100 random graphs on 60 vertices for each edge-density
0.1, 0.3, 0.5, 0.7 resp. 0.9. For the algorithms LF, DSATUR, RLF, IBSC(1),
IBSC(2), IBSC(|V |) and BSC we display the average number of colors used
and (in brackets) the average running time in ms.

edge-density 0.1 0.3 0.5

LF 4.86 (0.94) 9.09 (1.32) 13.59 (1.92)
DSATUR 4.18 (1.84) 8.21 (2.89) 12.50 (4.62)
RLF 4.17 (10.13) 7.96 (11.95) 11.94 (12.06)
IBSC(1) 4.00 (2.99) 7.57 (27.38) 11.52 (45.68)
IBSC(2) 3.99 (3.00) 7.39 (43.04) 11.39 (72.17)
IBSC(|V |) 3.99 (3.14) 7.10 (267.76) 11.00 (1107.75)
BSC 3.99 (5.14) 7.02 (485.65) 10.67 (19632.51)

edge-density 0.7 0.9

LF 19.24 (1.86) 28.52 (2.03)
DSATUR 18.08 (5.82) 27.49 (8.25)
RLF 17.18 (13.05) 27.26 (13.26)
IBSC(1) 16.83 (53.87) 26.23 (43.32)
IBSC(2) 16.66 (83.95) 26.20 (61.63)
IBSC(|V |) 16.08 (1382.24) 25.84 (424.18)
BSC 15.53 (39996.20) 25.80 (1154.61)

The results show that LF, the fastest algorithm on our list, yields poor qual-
ity. Its application makes sense only for very large graphs. RLF should be
applied only for dense graphs, otherwise too many contractions consume too
much time. Incomplete backtracking in a simple form, e.g. IBSC(1), may be
a good alternative to RLF or DSATUR.

In some situations the different performances of the algorithms can be made
more striking, if the coincidences of the number of colors used with the chro-
matic number are counted. We applied the algorithms to 100 random graphs
on 120 vertices with edge-density 0.1. The number of direct hits of the chro-
matic number is shown.

LF: 0, DSATUR: 5, RLF: 4, IBSC(1): 16, IBSC(2): 19, IBSC(|V |): 61.

REFERENCES 9

References

[1] Brèlaz, D., New methods to color the vertices of a graph, Communica-
tions of the Assoc. of Comput. Machinery 22 (1979), 251-256.

[2] Brigham, R. D. and Dutton, R. D., A new graph coloring algorithm, The
Computer Journal 24 (1981), 85-86.

[3] Brown, J. R., Chromatic scheduling and the chromatic number problem,
Management Science 19 (1972), 456-463.

[4] Corneil, D. G. and Graham, D., An algorithm for the chromatic number
of a graph, SIAM J. Comput. 2 (1973), 311-318.

[5] Hertz, A., A fast algorithm for coloring Meyniel graphs, Journal of Com-
binatorial Theory B 50 (1990), 231-240.

[6] Leighton, F. T., A graph coloring algorithm for large scheduling prob-
lems, Journal of Research of the National Bureau of Standards 84 (1979),
489-503.

[7] de Werra, D., Heuristics for Graph Coloring, Computational Graph
Theory, Comput. Suppl. 7, Springer, Vienna (1990), 191-208.

[8] Zykov, A. A., On some properties of linear complexes, Amer. Math. Soc.
Translations 79 (1952), p. 81.

