Optimization and Simulation: Sequential
Packing of Flexible Objects Using Evolutionary
Algorithms

H. Behnke, M. Kolonko, U. Mertins, S. Schnitter

Institut fiir Mathematik, Technical University Clausthal, D-38678
Clausthal-Zellerfeld, Germany

Abstract. We want to fill a given two-dimensional closed contour as
accurately as possible with a fixed number of identical, flexible objects.
These objects have to be packed sequentially. They adapt themselves
to the surface they are packed on, but their deformation can only be
simulated. This type of problem is the two-dimensional cross-section of
manufacturing processes where soft material is wound onto a mandrel.

We formulate this as a problem of dynamic programming with simu-
lated law of motion. It allows an evolutionary algorithm approach that
successfully produces approximate solutions in a non-sequential fashion.

KEYWORDS : evolutionary algorithms, optimization and simulation, packing
problems, dynamic programming

1 Introduction

We consider the problem of filling a given two-dimensional container with a fixed
number N of objects of identical type. The objects are smooth and adapt them-
selves to the surface their are packed on. The packing has to start at the bottom
of the container and the objects have to be placed sequentially, see Fig. 1. The
aim is to fill the container, which is given as a closed two dimensional contour,
as accurately as possible. The particular additional constraint here is that the
exact behaviour of the objects, their deformation function, is not available in
a closed analytical form. Instead, it has to be simulated based on assumptions
about properties of the material.

Hence, we have to solve an optimization problem with a simulated target
function. We use a dynamic programming framework to give a precise definition
of our problem. The dynamics of the model depend on the simulated deformation
of the objects, which rules out most solution methods of dynamic programming
like backward induction. Instead, we suggest an approximate procedure that
consists of a genetic algorithm framework optimizing the relative position of the
objects using the results of the simulation as fitness.

The main point here is to find a coding of the feasible solutions and of the
cost function (i.e. the deviation of the final layout from the target contour) such

that genetic algorithm techniques can be applied efficiently. With our approach
standard genetic operators yield feasible solutions without any problem specific
adaptations. Also, these operations behave ’locally’ enough to produce offspring
that inherits properties of their parents leading to astonishingly good solutions
in very short time for a number of real world problems.

The problem described is the two-dimensional cross-section of certain three-
dimensional packing problems that arise in the manufacturing of rotational sym-
metrical bodies like tubes, rings or tanks from fibre-reinforced plastic. Here, a
continuous fibre bundle impregnated with a polymere is wound around a rotating
mandrel, see e.g. [6] for technical details. The shape of the mandrel determines
the inner contour of the workpiece, the outer contour is formed by the layers of
the composite fibre bundles after hardening or cooling. So the winding robot has
to put more layers at places where the side of the workpiece is to be stronger
and less where there is to be a groove. Generally the aim is to control the robot
in such a way, that a predefined outer contour is filled as accurately as possible
with a given number of windings. As the spooled material is soft and sticky, it
will adapt to the surface or is even pressed on to it to prevent air inclusion.

Due to the rotational symmetry, we can restrict the problem to (one half of)
the 2-dimensional cross-sections of the workpiece and of the rope to be spooled,
see Fig. 1. Here, (a) shows the cross-section of a ring. The cross-section of the
rope when wound onto an even surface will look like Fig. 1 (b), this will be
referred to as an object. Fig. 1(c) shows one half of the ring (the target shape)
with four objects placed, i.e. with four rounds of rope already applied. The target
shape consists of the lower starting and the upper target contour . We assume
that the axis of the mandrel is parallel to the x—axis as indicated in the Figue.
1. We assume further that the number of objects is chosen appropriately (i.e.
the area of the target shape is N times the area of the objects). Note that we
neglect possible problems in the original 3-dimensional problem that may occur
when ’changing the lane’ during winding.

A A

—J - °

@ (b) (©

Fig. 1. Target shape and objects.

Classical problems of packing and cutting, see e.g. [2] mostly consider objects
of fixed shape, an exception is [4]. Methods for solving include dynamic program-
ming, integer programming, problem specific algorithms and several heuristics,
see [2]. In [3], simulated annealing is applied to a simple packing problem.

The paper is organized as follows. In Section 2, we give a formulation of the
problem in a dynamic programming set-up and define the solution. In Section 3
we sketch how to simulate the deformation of a single object and how to evaluate
the cost of a complete solution approximately. In Section 4 we then present a
genetic algorithm that produces good solutions in a non-sequential way. In the
final Section 5 we report on some practical experiences with an implementation
of the algorithm.

2 The Mathematical Model

Recall that a dynamic programming model (see [1]) consists of states s , actions
a , a transition function T'(s,a) that maps state-action-pairs into new states, a
cost structure with local costs ¢(s, a) connected to each transition and a terminal
cost function V4(s) for the final state.

Our packing problem fits into this framework if we regard the decision where
to place the next object as an action. Then N := no. of objects to be placed
equals the number of optimization stages. The state of the packing has to contain
all information relevant for the further placement, in particular, the present
upper contour formed by the objects already placed. This will be made precise
in the following sub-sections.

2.1 Feasible Contours

We describe the contour by two functions for its upper and lower half. The set
of possible contour functions is

¢ = {C:[a,B8] = R4 | C bounded, continuous and piecewise differentiable}

with a < 8,a,8 € IR. We assume that the given starting contour Cy and the
target contour C belong to € with Co(z) < C(z) for = € (a,8) and y, =
Co(a) = C(a), yg := Co(B) = C(B), see Fig. 2. During the placement, the
starting contour Cj is changed to contours C; < Cs < ... < Cn € € by adding
on the objects.

We characterize each point on a contour C' € € by its distance from the left
endpoint of C' measured in arc length, ’C'—distance’ for short. To do so, let

Ac(z) = /w V1+C'(2)2dz, z€la,p], Cec

denote the C'—distance of the point (z, C(z)) from the left starting point (o, C'(x))
measured in arc length along C.

Co

(@, Ya)

(B,y8)

¢
3 0
«a z B

Fig. 2. A target shape with starting contour Co and target contour C, point (z,C(z))
has distance A5 (z) from the left endpoint.

2.2 The State Space

Next we define the state for the dynamic programming model described above.
We assume that the winding robot moves from one side of the target shape
to the other and back again, i.e. it produces complete layers of material and may
not change its direction freely. This restricts the space of possible solutions but
simplifies matters considerably.
For a given starting contour Cy € € with y, = Co(a),ys = Co(8) we define
the state space

S = A{(C,t,d) | Ceg, Cla) =ya,C(B) =ys, Cz) 2 Co(z),a <z <P,
and 0 <t < Ac(B), d € {-1,+1} }.

Here, the state s = (C,t,d) indicates that the objects placed so far form an
upper contour C' and that the location of the last object placed is represented
on C by t (in C—distance). d = +1 indicates that the present layer runs from
left to right, d = —1 indicates the opposite direction. Note that the last object
was not placed on C, point ¢ only represents that location, see details below. In
the starting state (Co,t,d), t indicates an arbitrary reference point for the first
placement.

2.3 Action and Placement

As described above, the placement of an object has to be formulated as action
in the dynamic programming model.

We assume that the objects all have identical shape before placement (i.e.
the rope of material has a constant cross-section) and that the length L of their
lower contour (base line) and the volume of the cross-section when placed on
a surface are constant, see Fig. 1 and 3. As reference point for the placement
(basepoint) we take the middle of this base line, it will be marked by a black
triangle in the figures below.

Let A > 0 be the maximal C'—distance between two successive objects that
can be managed by the winding machine. Then, action a € [0, 1] applied to state

Fig. 3. An object is placed on C with its basepoint at C—distance ¢t + a.

(C,t,d) means to place the next object with its basepoint at a C'—distance of
da) from t, i.e. at C'—distance t + daX from the left endpoint, see Fig. 3. Near
the left and right border of the target shape this may lead to infeasible positions
¢ [0,Ac(B)]. In this case the direction d is changed to —d and the object is
placed at the next feasible position, hence the exact position of the new object
is at a C—distance 7(s,a) where

t + da) if L/2 <t+da) < Ac(B) — L/2
7(s,a) = 7((C,t,d),a) == { L2 if t +da) < L/2
Ac(B) = LJ2 if t+da\ > Ac(B) — L/2

and the direction after placement is given by

8(s,a) = 6((C, t,d),a) := {‘fd ieflse L/2 <t+daX < Ac(B) - L/2

Note that this notion of feasible placement does not prevent objects to be placed
completely outside of the target shape, see Fig. 6 below for an example.

2.4 The State Transition

The state transition function has to describe the contour after a placement of a
new object. Let the local deformation function for an object

I—=~(C,rl)

be a bounded, continuous and piecewise differentiable function that gives the
height of the object ! units (in C'—distance) from its left endpoint if the object
is placed on C' at a C'—distance r, see Fig. 4. In the next Section, we shall give
an idea how to simulate 7.

The new contour after placing an object in state s = (C,t,d) € S with a
relative offset of a € [0,1] is now given by

C(x) for Ac(z) <7(s,a) —L/2
Cs,o(x) = < C(z) +~(C,71(s,a),l) for Ac(z) =7(s,a) —L/2+1,0<I<L
C(z) for Ac(z) > 7(s,a) + L/2

(2)

Fig. 4. The object is placed at C—distance r. Its height ! units from its left endpoint
is given by v(C,r,1).

for a < z < . Note that the region outside 7(s,a) = L/2 refers to that part of
the contour that is left untouched by the newly placed object. Obviously, Cs ,
belongs to € for all s, a.

We finally have to determine how the location 7 (s, a) at which the last object
was placed on C' is represented on the new contour Cj,, as reference point for the
next placement. We use the projection of the basepoint of the last object onto the
new contour where the projection is perpendicular to the line connecting left and
right endpoint of the object, see Fig. 5. From simple geometric considerations we

. ;
T Z Iy, T

Fig. 5. The reference point for the next offset is marked by a black dot. It is a projection
of the basepoint (black triangle) of the last placement onto the new surface.

obtain that the z—coordinate 2, = z.(s,a) of this point is the smallest solution
y of

(y—2)(—2)/(C(z) —-C@) +C(2) = Csaly) 3)
where z,Z and z are as in Fig. 5. Now the complete transition function for the

dynamic programming model with local deformation functions y can be defined
from (2) and (3) as

T(s,a) = T((C,t,d),a) = (Csa,Ac, ,(2:(5,a)),d(s,a)). (4)

2.5 The Cost Structure

We have no local costs in our model but a terminal cost function

8 _
Vo(s) = Va((C,t,d)) = / |C(@) - C(a) | d. (5)

a

which gives the deviation from the target contour in the final state.
Now the dynamic programming problem is completely determined. A solution
to this problem is a sequence of offsets

ag,...,an—1 € [Oa l]N

for the consecutive placement of the N objects on the starting contour Cy. Note
that any sequence from [0, 1] constitutes a feasible solution. Its costs are given
by

%(T(.. (T(T(So,ao),al), - ;aN—l)

5 _
/ | On(z) — C(a) | do

a

Vn(s0,0a0,-.-,an_1)

(6)

where Cy is the final upper contour after applying ag, .. .,an—1 to sg. An optimal
solution for starting state so = (Co,t,d) is a sequence ajj,...,ak_; € [0,1]V
that minimizes (6) over [0, 1]V.

3 Simulating the local deformation

We only sketch the simulation very briefly as it is not in the focus of the present
paper.

In our experiments it turned out to be sufficiently accurate to use piecewise
linear functions for the contours as well as for the objects, and hence for the
deformation function v. This greatly simplifies the calculation described above
and also the representation of a contour on the computer.

Let 4o : [0, L] — IR denote the piecewise linear upper contour of the object
when placed on an even surface. We add - to the present contour at the location
given by 7(s,a). Let I" denote that part of the new contour C; , that is formed
by 7o.

We use two different levels of simulation to improve I'. The first level assumes
that the surface of an object will always tend to form a section of a circle. From
simple geometric considerations we can determine a circle that runs through the
two endpoints of the object placed at 7(s,a) (2,7 in Fig. 5) and encloses the
exact volume of the object. We then approximate the relevant section of the
circle by a polygone which is slighly changed afterwards to enclose the correct
volume. This yields an improved deformation function ;.

This is a very fast procedure that works well as long as the surface C' is not
too ragged. Otherwise the circle may intersect with C. This has to be detected
and then the second more detailed level of simulation has to be called. Here,
the polygone describing I' is optimized to yield smallest length and minimal
distortion with the correct enclosed volume. This is done using a standard library
for non-linear optimization. The result is a simulated contour C, , which takes
into account more physical properties of the material.

For a given starting state so and a sequence of off-sets ag,...,an_1 € [0,1]
we evaluate the cost function Vy(sg,ao,...,an—1) as given in (6) successively
by N calls of the simulation.

4 An Evolutionary Algorithm

We shall now describe an evolutionary heuristic algorithm that yielded excellent
solutions in our experiments. Let us briefly collect the main ingredients of ge-
netic algorithms (see e.g. [5]). A starting population of solutions (’individuals’)
is created at random. It is subject to random genetic operations that produce
off-spring solutions. Standard operators are crossover of two randomly selected
solutions and random mutation of a solution. Repeated application of these op-
erators enlarges the population which is then reduced by a selection mechanism
to its former size. This cycle (’ generation’) is repeated for a certain number
of times. The selection prefers solutions with low costs. Thus the members of
the successive populations tend to become good solutions of the optimization
problem. There are many different ways to select solutions for the operations
and to take into account their 'fitness’, i.e. the cost of the solution.

In the preceding Sections we have formulated our problem such that the
structure of a solution ag,...,anx_1 is extremely simple : it lies in the unit
rectangle [0,1]" and each vector in this space represents a feasible placement
of N objects. Therefore we may use simple standard genetic operators without
any problem specific mending operation. The fitness of a solution ag,...,an—1
is measured by the cost function Vin(so,ao,--.,an—1) as defined in (6). Note
that we minimize fitness.

For crossover we use a one-point or uniform operator. The one-point crossover

takes two randomly selected solutions (ag,...,an—1) and (ag,...,aly_ ;) as par-
ents, selects a random position [€ {0,...,N — 1} and returns the solution
(ao,.-.,a1,a;,1,...,aN_;). In terms of controlling the winding machine this

means to use off-sets from the first solution for the first [rounds and then to fol-
low the second solution. Uniform crossover selects each position in the resulting
solution independently from one of the parents.

Note that we restricted changes of the direction d to the lateral borders where
it is calculated by the cost function. Including changes of direction into the so-
lution would cause problems with crossover operators, as the impact of a change
in direction depends heavily on its absolute location within a placement which
in general will be changed during a crossover. Then the offspring individuum
will be quite different from its parents which would make the algorithm search
rather arbitrarily in the solution space.

We apply mutation to each new offspring solution created by crossover. Mu-
tation operators randomly change single offsets of a solution. Again, even a small
change of a single offset may lead to a completely different solution, as all subse-
quent objects are shifted. We therefore use a ’local’ mutation that also changes
the next offset to neutralize the widerange effect of the mutated offset. The pro-
cedure is as follows: select an index 0 < ¢ < N — 2 randomly with a bias towards
higher values. In the solution to be mutated, let ¢ = a; + a;4+1. Select a new
value af uniformly distributed over

[max{l,a} -1, min{l,a}]

and put aj,; = 0 — aj. Then aj,ai,, € [0,1] and a} + aj,,; = o, i.e. the position
of objects i + 2,7 + 3, ... on the their contour is unchanged. Note however, that
the contours themselves will have changed due to the moving of objects ¢ and
i + 1. This may be illustrated by looking at the ag,...,any_1 as distances of
beads on a string. Mutation then moves exactly one of the beads and leaves the
others unchanged.

Let M be the population size. Crossover and mutation are repeated for a
fixed number M' of times enlarging the population to M + M’ elements . The
selection mechanism then takes M solutions from the enlarged population to
form the next population. These may be the M solutions with lowest (simulated)
costs Vv , or they may be drawn with a probability density proportional to the
Vi-values or proportional to their rank with respect to these cost values. Again
these are standard selection procedures.

We provided the system with a graphical user interface , that allows to display
the evolution of the population with their cost values. The evolution may be
stopped and the individuals may be inspected graphically as shown in Fig. 6
and 7 below.

5 Experimental Results

We applied our model to several contours supplied by our industrial partner.
Typically there were about 60 objects to be placed. Target contour and the
cross-section of the object were given as polygones, similar to Fig. 1.

A starting population was created randomly, good results were obtained with
individuals that had constant offsets ag,...,any_1 with different random values
for different individuals. As starting state (Co,t, —1) we used the lower contour
Cy with its middle point as reference point for the first object.

110 / 110 /

L L L L L L L ' 100 L L L L L L L ,
-80 -60 -40 -20 0 20 40 60 80 80 -60 -40 20 0 20 40 60 80

Fig. 6. Two individuals from a starting population.

Fig. 6 shows two individuals from a starting population. The one on the
left was produced with econstant offsets, the other with random offsets. Note
that these are obtained by placing a random vector of offsets into the contour
using the simulation of the cost function as described in Section 3. The much
improved results in Fig. 7 show the two best individuals obtained after about
300 generations of the genetic algorithm which took about 30 sec of cpu time on
a 650 MHz Pentium.

110 / 110 /

L L L L L L L ' 100 L L L L L L L ,
-80 -60 -40 -20 0 20 40 60 80 ~-80 -60 -40 20 0 20 40 60 80

Fig. 7. Two individuals from a later population.

Results from this system were fed into a real winding machine. The contours
obtained in reality were in very good accordance with our simulated contours.
This shows that our simple model of deformation reflects reality with sufficient
accuracy.

6 Conclusions

We modelled a complex technical process of placing flexible objects into a given
contour as a deterministic dynamic programming problem. The classical sequen-
tial solution methods are not applicable as the main ingredient of the model, the
state transition function is not known. It can only be approximated by a separate
local optimization that simulates the physical properties of the flexible material.

We therefore took a non-sequential approach, that optimizes all placement
decisions at once with a genetic algorithm. The formulation of the model allowed
to produce feasible solutions with standard genetic operators without the need
of problem specific mending operations.

In real world applications with about 60 objects this algorithm produced
astonishingly good results in just a few seconds.

References

1. Bertsekas, Dimitri P. Dynamic programming : deterministic and stochastic models
Englewood Cliffs, N. J.: Prentice-Hall, 1987.

2. Dowsland, Kathryn A. and William B. Dowsland Packing Problems Europ. J.
Operational Research, 56 (1992), 2-14.

3. Dowsland, Kathryn A. Some Ezperiments with Simulated Annealing Techniques
for Packing Problems Europ. J. Operational Research, 68 (1993), 389-399.

4. Scheithauer, G.The Solution of Packing Problems with Pieces of Variable Length
and Additional Allocation Constraints Optimization, 34 (1995), 81-86.

5. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolutionary Programs.
Springer Verlag, 1992.

6. T. J. Reinhart. Composites. Engineered materials handbook, ASM International /
Handbook Committee, Metals Park, Ohio : ASM International, 1988.

