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Abstract

Due to the complexity of many important combinatorial optimization problems, heuris-
tic search algorithms are of overwhelming importance for a practical solution of many
problems in Operations Research like tour planing, vehicle routing, scheduling, pack-
ing etc. Many traditional heuristic procedures are ‘solution-based’, e.g. tabu search,
simulated annealing, genetic algorithms etc. Here, new solutions are produced trough
manipulating current solutions with a specified strategy like edge exchanging in tour
planning, crossover and mutation in genetic algorithms etc.

Recently, a different class of algorithms have gained attention which do not concentrate
on solutions, but on the mechanism to produce them. The mechanism is typically a
distribution on the space of solutions. It is often called a ‘model’ for the solution space,
and new solutions are produced by sampling from it. Starting from a fixed initial model,
these algorithms then iteratively evolve the present model by adapting it to some ‘best’
solutions sampled from the present model and/or previous models. By the evolution,
they expect to reach a model concentrating only on some optimal solutions. Examples
of these ‘model-based’ heuristic procedures include ant colony optimization algorithms,
cross entropy algorithms and estimation of distribution algorithms.

This Thesis concentrates on these model-based heuristics i.e. model-based search. We
propose a framework which covers the essential features of these algorithms in practice.
The framework contains a new concept which can include probabilistic dependencies
into the sampling. We study closely the resulting stochastic process of the framework.
We state simple conditions which guarantee to reach an optimal solution in finitely
many iterations. For some standard test problems, we show conditions which imply a
(low-degree) polynomial runtime with a probability converging to 1 as the problem size
approaches infinity.

We also investigate the asymptotic properties of the samples and models. We show
that the sampling may get frozen at a fixed solution after finitely many iterations, and
the models may converge to one-point measure. This theoretically proves the stagnation
behavior observed in the literature. In particular, we propose conditions which make
the models converge to a limit concentrating only on optimal solutions.

We complement the theoretical analysis with a computational study on the famous
traveling salesman problem. The experimental results clearly demonstrate our theoreti-
cal findings, and show some useful hints for a practice use.

Keywords:
combinatorial optimization; heuristics; ant colony optimization; cross entropy;
estimation of distribution algorithms; distribution learning; convergence; runtime
analysis; genetic drift; unsupervised learning; stochastic process.
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1 Introduction

Combinatorial optimization [KV02] is a very important topic in applied mathematics
and theoretical computer science. It can be simply stated as finding out an object from
a finite collection of candidates which minimizes (or maximizes) an associated objective
function. A well-known problem involving combinatorial optimization is the traveling
salesman problem (TSP), which concerns finding a shortest tour that starts in a city,
traverses each other city exactly once, and finally returns to the start city. Actually,
combinatorial optimization can be seen almost everywhere in reality. In logistics, we
may need to determine routes with a minimal total delivering cost for a fleet of vehicles
which are employed to deliver goods from a central depot to consumers who ordered the
goods. In a water supply system, we may need to place several valves at pipes’ extremes
such that when a pipe breaks, it is possible to isolate it with minimal damage to the rest
of the network. In a factory, we may need to arrange some jobs on some machines such
that the resulting makespan becomes minimal. In a harbor, we may need to determine
a minimal number of ships for loading certain goods which are of different volumes and
shapes.

In combinatorial optimization, we often call the collection of candidates a feasible set,
an object belonging to the collection a feasible solution, and a feasible solution min-
imizing (or maximizing) the associated objective function an optimal solution. Here,
the objective is to find an optimal solution from the finite feasible set. In mathe-
matical optimization, combinatorial optimization is usually categorized as a subtopic
of discrete optimization. It is closely related to operations research, algorithm theory
and computational complexity theory. It has important applications in other fields like
transportation, machine learning, artificial intelligence, software engineering, job shop
management, information and communication techniques etc.

Due to the discrete nature, generally we can not get an analytic solution for a com-
binatorial optimization problem. Thanks to the dramatically increased computational
capacity in recent years, we now can exactly solve many combinatorial optimization
problems under a moderate size by running an exact search [Woe03] on a computer,
e.g. we may enumerate all feasible solutions. However, as the problem size increases,
the complexity of the problems may increase exponentially. When the problem size is
relatively large, we may not get an exact optimal solution in an acceptable run time.
To quickly obtain a practical solution in the case of a large problem size, we have to
employ some non-exact search procedures. Generally, these procedures can be collected
in two classes: approximation algorithms [WS11] and heuristics [Nic07]. Approximation
algorithms are those which are designed according to some particular features of the
underlying problem, and guarantee to find a high-quality approximation for the opti-
mal solutions. Typically, they can guarantee that the approximation is optimal up to
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a small constant factor, say 5%. However, they may depend heavily on the structure of
the underlying problem, therefore can not be used for a general-purpose.

Heuristics do not guarantee on solutions’ qualities. However, many applications have
demonstrated that they can reach high-quality solutions in most cases. They are often
equipped with some ‘intelligent’ or ‘self-adaptive’ mechanisms. These mechanisms are
used to guide the underlying search in the feasible set. But, these mechanisms are gen-
erally designed without involving much prior knowledge about the underlying problem.
This makes heuristics rather portable in practice. So, heuristics can be seen as general-
purpose tools for optimization. As a general-purpose tool, heuristics can be used in
many other fields, e.g. bioinformatics, machine learning, artificial intelligence.

Heuristics can be collected in two subclasses: solution-based heuristics (search) and
model-based heuristics (search), see [ZBMD04]. Solution-based search concentrates on
solutions. They iteratively evolve solutions. New solutions are produced by manipulating
present solutions in a way that we can expect a better solution in the next round. Many
traditional heuristics are solution-based. Examples are these nature-like algorithms as
tabu search [GL99], simulated annealing [BT93], genetic algorithms [Mic96] etc. Here,
new solutions are produced by changing and/or exchanging components on present so-
lutions such that new solutions will ‘inherit’ good properties of present solutions. For
example, when we apply a genetic algorithm to a TSP, new tours (solutions) are produced
by performing crossover (exchanging edges on two selected parent tours) and mutation
(randomly changing one edge on a child) on the present tours. More recent examples
of solution-based search are some swarm intelligence algorithms, including artificial bee
colony [KGOK12], particle swarm optimization [KE95] and electromagnetism-like algo-
rithm [BF03] etc. They aim to simulate the ‘collective’ behavior in a school of practical
creatures. They iteratively evolve a swarm of solutions. The evolution of each individual
(solution) in the swarm may refer to both its own history and the histories of its com-
panions. For example, in a particle swarm optimization, an individual is evolved with
reference to both its own best experience and the global best experience accumulated
by the whole swarm.

Model-based search does not concentrate on solutions, but on the mechanism to pro-
duce solutions. This mechanism often explains the structure of the underlying problem
to some extent. It is therefore called a ‘model’ of the problem or its solutions. Typically,
it is a probabilistic distribution on the feasible set. Here, new solutions are produced by
sampling from a present model. Model-based search iteratively evolves models instead of
solutions. By evolution, they aim to reach a model which can produce optimal solutions
only or with an overwhelming probability. Examples of model-based search are cross
entropy algorithms [RK04], ant colony optimization algorithms [DS04], and estimation
of distribution algorithms [HP11]. Starting from an arbitrarily fixed initial model Π0,
model-based search then iteratively evolve models as, for t = 0, 1, 2, . . . ,

Sampling: generate a random sample Xt of a specified size N ∈ N by the present model
Πt;

Learning: learn an empirical model Wt from a subsample N b
t consisting of some selected

‘best’ solutions which are seen in present sample Xt and/or in history;

2
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Update: set the next model Πt+1 = (1 − ρt+1)Πt + ρt+1Wt, where ρt+1 ∈ (0, 1] is a
learning rate fixed in advance.

In combinatorial optimization, the feasible set is finite. A model (or a distribution)
can be therefore described by a vector. So, the next model Πt+1 is actually a convex
combination of present model Πt and the learned empirical model Wt, where the learning
rate ρt+1 reflects the relative importance of Wt in the combination. The subsample N b

t

typically consists of some best solutions seen in Xt and history, for example, it may
consist only of best solution found so far or of some elite solutions in present sample
Xt. By learning from N b

t , the empirical model Wt may contain information about
good solutions. By the combination, the next model Πt+1 is therefore biased towards
good solutions. Thereby, we may expect that in the next sampling, more good solutions
will be produced. By iteratively evolving through the three steps, we hope that the
resulting models process

(
Πt

)
t=0,1,2,...

can converge to a limit Π∞ concentrating on
optimal solutions i.e. the probability for producing optimal solutions by Π∞ is 1. So,
in model-based search, we actually ‘optimize’ the mechanism for producing (optimal)
solutions.

Model-based search may also apply to other fields. Typically, they can apply to rare
event simulation which usually concerns calculating the probability of a rare event in
a complex system, see [RT+09] or A. 6 in Appendix. Due to the rarity of the event,
the classic monte-carlo method may fail to give an effective approximation to that prob-
ability. Here, a well-known approach is to employ importance sampling under a best
change of measure selected from a specified family of candidate measures (distribution
or density). Since model-based search evolve models (distributions), they can be applied
easily to select the best change of measure. A successful example is the cross entropy
algorithm for rare event simulation, see [Rub97] and [Rub99].

Model-based search are closely related to other fields involving estimation of distribu-
tion or density. A typical example is the so-called unsupervised learning in the field of
machine learning [Alp10]. In unsupervised learning, we want to detect the regularities
concealed in the input data. Typically, we may build a multivariate distribution (or a
density) which fits the input observations best. By this distribution, we can determine
the mutual dependencies of different variables. This may coincide with the ‘Learning’
step in model-based search. They can therefore share the learning method. A method
used in the ‘Learning’ step may also apply to unsupervised learning, and vice versa. For
example, the Bayesian network is used in both Bayesian optimization algorithm [Pel05]
and the unsupervised learning.

This Thesis concentrates on model-based search. We will inspect their long-term
behavior in combinatorial optimization. To do this, we will build a framework which
can cover the essential features of these model-based search algorithms used in practice.
The framework will result in a mixed Markov process, i.e. some marginal processes
are discrete and other marginals are continuous. We will do a thorough mathematical
analysis of this mixed process. Special emphasis will be given to the marginal processes
formed by samples Xt and models Πt. Due to the non-homogeneity and complexity of
the mixed process, we will not go along with the classical analysis for Markov chain. Our

3
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analysis will involve only the memory-less property of the Markov chain. However, some
basic knowledge about probability theory is required. Readers who are not familiar with
probability theory can see A. 4 in the Appendix as a reference.

We will launch the analysis by stating simple conditions for guaranteeing to reach an
optimal solution. These conditions should be of great interests in practice. In [Gut00]
and [Gut03], W. J. Gutjahr showed that for a particular ant colony optimization al-
gorithm, we can increase the occurring probability of optimal solutions by decreasing
the evaporation rate (learning rate) or increasing the sample size N . In [CJK07], A.
Costa et al inspected some important asymptotic properties of a generalized cross en-
tropy algorithm for unconstrained combinatorial optimization problems. They showed
conditions guaranteeing to reach an optimal solution. In our former work [WK14b], my
supervisor and I inspected a more general cross entropy optimization algorithm which
also covers the essential features of some ant colony optimization algorithms. In that
work, we did not impose any restriction on the underlying problem. Still, we are able
to show that the conditions proposed in [CJK07] hold in the more general algorithm. In
Chapter 5, we will continue the study of our former work. We show that the findings in
[Gut00], [Gut03], [CJK07] and [WK14b] also hold in our more general framework, see
Theorem 5.7. Therefore, they may apply to all algorithms covered by the framework.
In particular, we find that for the popular case ρt ≡ ρ > 0 used in practice, optimal
solutions may not occur.

In recent years, the runtime analysis for heuristics has become a very popular field, see
e.g. [NW06], [NW09], [DNSW07], [DJ07], [Gut07], [Gut08], [CTCY10] and [WK14b]. In
runtime analysis, we want to find conditions which make an algorithm reach an optimal
solution efficiently with a high probability. Here, the runtime is a rudimentary copy of
the computational complexity in theoretical computer science. It is generally defined as
the total number of solutions evaluated before reaching an optimal solution. In [NW06],
[NW09], [DNSW07], [DJ07], [Gut07], [Gut08], researchers considered runtime for ant
colony optimization algorithms with restricted models on some simple test problems like
OneMax and LeadingOne. They found that the runtime is closely related to the learning
rate, and we may reach an optimal solution efficiently by adapting a constant learning
rate to the problem size if we use restricted models. In [CTCY10], Chen et al initiated
a different study for the case of non-restricted models. They inspected the runtime for
a univariate marginal distribution algorithm (a particular cross entropy algorithm with
ρt ≡ ρ = 1). They showed that in the case of non-restricted models, we may also reach
an optimal solution efficiently by adapting the sample size to problem size. Our former
work [WK14b] extends the finding in [CTCY10]. We showed that actually for the more
general case ρt ≡ ρ > 0, the finding in [CTCY10] may still hold. In Chapter 5, we will
collect our former runtime results in Theorem 5.8. Moreover, we will propose a new
runtime result in Theorem 5.9 for the case of restricted models.

It is not surprising that solutions’ qualities may stop improving after finitely many
iterations for heuristic algorithms in combinatorial optimization, because of the finite
size of the feasible set. However, in model-based search, the reason is not so simple.
[DMC96] and [DBKMR05] observed a phenomenon that after finitely many iterations,
the ‘Sampling’ in ant system and cross entropy algorithm may be frozen at a fixed
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solution. In other word, the algorithms may completely lose randomness after finitely
many iterations. This coincides with the well-known ‘genetic drift’ phenomenon [AM94]
in genetic algorithms. In our former work [WK14b] and [WK14a], we showed for cross
entropy algorithm and a more general algorithm, resp., that when the learning rates
ρt ≥ ρ > 0 for each t ∈ N, the phenomenon would occur with probability 1. In Chapter
6, we formally define the phenomenon as absorption of solutions. We will show that
absorption of solutions still holds in our framework if the learning rates ρt ≥ ρ > 0 for
each t ∈ N and constant ρ, see Theorem 6.1. Therefore, model-based search may keep
search ability only in finitely many iterations. After that, they may become deterministic
and stick on a fixed solution. In particular, we show that when absorption of solutions
holds, optimal solutions may not occur, see Theorem 6.4. Moreover, we find that the
solution which freezes the sampling is typically an iteration-best solution or best found
solution in the search history, see Theorem 6.3. Here, it is worthy to mention that
inspired by the proof of Theorem 6.1, we are able to formalize a simple method which may
be helpful in quickly determining some asymptotic properties for a non-homogeneous
Markov chain.

The asymptotic behavior for the models is of great importance in model-based search.
We are eager to know the conditions which make the models converge to a limit concen-
trating on optimal solutions. In [Gut02] and [Mar05], researchers showed conditions for
some particular algorithms which learn the empirical model only from the best solution
found so far. In [WK14b], we showed that in cross entropy algorithm, convergence of
models and occurrence of optimal solutions are compatible. This settles an open ques-
tion proposed in [CJK07]. In [ZM04], Zhang et al showed that the models in univariate
marginal distribution algorithm will converge to a limit concentrating on optimal so-
lutions, if we assume an infinite sample size. In Chapter 6, we continue the research
in [Gut02], [Mar05] and [WK14b]. We show that if absorption of solutions holds, the
models will converge to a limit which concentrates on a single solution, see Theorem
6.5. Moreover, we are able to show conditions which make models converge to a limit
concentrating on an optimal solution, see Theorems 6.6-6.7. The conditions here greatly
weaken the conditions proposed in [Gut02] and [Mar05].

The remaining of the Thesis consists of 7 Chapters. As a background, we will intro-
duce combinatorial optimization and heuristics in Chapter 2, and make a short tutorial
for these model-based algorithms used in practice in Chapter 3. In Chapter 4, we will
propose a unified framework based on these algorithms in practice, and summarize the
common rules used by them. Our theoretical findings will be proposed in Chapter 5
and Chapter 6. In Chapter 5, we will report the results related to occurrence of optimal
solutions. In Chapter 6, we will report the results on asymptotic properties of solutions
and models. In Chapter 7, we complement the theoretical analysis with a computational
study on a TSP instance. The experimental results will clearly demonstrate the theo-
retical findings, and show some useful hints for a practical use. In Chapter 8, we will
give some suggestions for a future research and make a summary to the whole Thesis.
Some useful backgrounding knowledge are collected in the Appendix.
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2 Background: combinatorial optimization
and heuristic search

This Chapter serves as a background of our main topic model-based search (heuristics).
We will review some basic elements for combinatorial optimization and give a short intro-
duction to heuristic search. Readers who are very familiar with them can skip over this
Chapter. The whole Chapter is arranged as: Section 2.1 defines several frequently used
elements in combinatorial optimization; Section 2.2 shows some benchmark examples of
combinatorial optimization, which will be frequently referred in the sequel; Section 2.3
gives a brief introduction to heuristic search with emphasis on its classification.

2.1 Combinatorial optimization: some elements

Optimization or mathematical optimization is a study subject which concerns finding an
optimum for a certain function in a given (restricted) domain, see [GL95]. According to
an encoding of the domain, we may collect optimization into two categories: continuous
optimization and discrete optimization, see [Gou06] p. 1. Generally, discrete optimiza-
tion concerns a search in a countable collection, i.e. the domain is encoded discretely,
see [BR03]. Here, we only talk about combinatorial optimization, a subtopic of discrete
optimization. Readers who are interested in continuous optimization, see [AEP05] for a
reference.

Combinatorial optimization (CO) is a very important and popular subtopic of discrete
optimization. It has applications in various fields, e.g. machine learning, artificial in-
telligence, software engineering, job shop management, information and communication
techniques. According to [Law01] pp. 1-2, CO concerns finding an optimal arrange-
ment, grouping, ordering or selection from finitely many candidates. Here, we consider
CO more extensively as a finite optimization, i.e. a study subject of searching for an
optimal object within a finite collection of candidates.

Let S be a non-empty finite set, f a real function on S i.e. f : S 7→ R, and O ∈ {0, 1}
a constant. Then the triple (S, f,O) is called a CO instance. And if O = 1, we say
further that (S, f,O) is a maximizing instance, otherwise it is called as a minimizing
instance.

Let (S, f,O) be a CO instance. We call each s ∈ S a feasible solution, S the feasible
set and f the objective function of that instance. For each s ∈ S, f(s) is called the
objective value of s. If it is a minimizing instance (i.e. O = 0), then an optimal solution
is defined as a feasible solution which minimizes the objective function f. Otherwise,
an optimal solution is a feasible solution which maximizes f. Throughout this thesis,
we shall denote the collection of optimal solutions as S∗. Obviously, S∗ ⊆ S. For each
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s∗ ∈ S∗, its objective value will equal the same value and we call this value the optimum
of that instance. These definitions shall be frequently used in the sequel. To further
understand them, some examples are collected in Section 2.2.

Given a CO instance (S, f,O), the objective of CO is to find out an optimal solution
s∗ ∈ S∗ for this instance. Due to the finite size of the feasible set S, it must exist an opti-
mal solution i.e. |S∗| ≥ 1. In theory, we can find an optimal solution by enumerating all
possible candidates in S. However, this is often infeasible in practice, especially when the
size of S is extremely large. The main reason is that enumerating a huge collection may
require not only a huge memory, but also a prohibitive time. Although the capacity (in-
cluding computational speed and memory) of computers has been dramatically improved
in these years, it is still too limited compared to the practical demand in CO. Therefore,
we need resort to some more ‘clever’ search procedures. Among them, the procedures
of model-based type have gained numerous attention in these years. This Thesis will
concentrate on these procedures, and aim to inspect their asymptotic properties in CO.

2.1. COMBINATORIAL OPTIMIZATION: SOME ELEMENTS 7
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2.2 Combinatorial optimization: examples

In CO, an optimal solution to a particular instance is not of much interests. We are
more interested in a unified method to solve a class of instances of a certain type.
Formally, a specified class of CO instances is often called a combinatorial optimization
problem (COP), see also the definition in [AL97] p. 3. For example, maximizing problem
contains all those instances with O = 1, and minimizing problem contains those with
O = 0. In this Section, we collect some benchmark problems. These problems can
also be found in [KV02], [Law01] and [RK04]. They may involve some definitions in
graph theory, readers can refer to Section A. 1 in the Appendix for an explanation of an
unknown terminology.

2.2.1 Traveling salesman problem

Traveling salesman problem (TSP) is a classic COP. Formally, TSP concerns finding a
cheapest Hamiltonian circuit in a weighted (fully) connected graph G = (V,E,w). Here,
recall that a walk W on G is a sequence

v0, (v0, v1), v1, (v1, v2), v2, . . . , vn, (vn, vn+1), vn+1

such that each (vi, vi+1) ∈ E is an edge (or arc) and each vi ∈ V is a vertex, for
i = 0, 1, 2, . . . , n+ 1 and some n ∈ N. In the sequel, we call the first vertex v0 on W the
start vertex, the last vertex vn+1 the end vertex. And we say that walk W traverses a
vertex v ∈ V if v = vi for some i = 0, 1, 2, . . . , n+1. A Hamiltonian circuit is a particular
walk which starts from a vertex, traverses each of other vertex ∈ V exactly once, and
finally returns to the start vertex.

For a walk W in a weighted graph G = (V,E,w), we can define its traveling cost f(W )
as

f(W ) :=
∑

e∈E,e∈W
w(e), (2.1)

where e ∈ W indicates that edge (or arc) e is on walk W . Let S be the collection
of all Hamiltonian circuits in a weighted (fully) connected graph G, and f defined as
(2.1). Then (S, f, 0) is a TSP instance with feasible set S and objective function f. And
each Hamiltonian circuit s in the graph G is a feasible solution with the corresponding
traveling cost f(s) as its objective value, an optimal solution now is a Hamiltonian circuit
with lowest cost. S∗ then collects all of the Hamiltonian circuits which have the lowest
traveling cost, and the optimum is just the lowest traveling cost.

2.2.2 Assignment problem

Consider that there are a collection J = {J1, . . . , Jm} of m jobs and a collection M =
{M1, . . . ,Mn} of n persons or machines with m ≤ n. Each job must be processed by
exactly one person, and each person can do at most one job. There exists an associated
assignment cost cij if we assign the job Ji to person Mj . Here, an assignment is an
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injection1 from J into M. Let π be an arbitrary assignment, π(Ji) ∈ M would then
represent the assigned machine of job Ji for each i = 1, . . . ,m. The total (assignment)
cost of π can be defined formally as

f(π) :=
m∑
i=1

n∑
j=1

ci,j1{π(Ji)}(Mj), (2.2)

where 1{π(Ji)}(·) is the indicator function2 for the singleton {π(Ji)}. The assignment
problem (AP) concerns finding an assignment with lowest total cost.

Given a set J of m jobs, a set M of n machines with 0 < m ≤ n, and the associ-
ated assignment costs matrix (ci,j)m×n. And let S denotes the collection of all possible
injections (assignments) from J to M. Then (S, f, 0) with f defined in (2.2) is an AP
instance. Of cause, an optimal solution to this instance is an injection with lowest total
cost.

2.2.3 Maximal cut problem

A cut to a weighted graph G = (V,E,w) is a partition3 (V1, V2) of the vertices V. Let
(V1, V2) be a cut, the cutting benefit is defined as

f
(
(V1, V2)

)
:=

∑
a∈V1,b∈V2

w
(
(a, b)

)
. (2.3)

The maximal cut problem (MaxCut) concerns finding a cut for the underlying weighted
graph which has maximal cutting benefit. Obviously, when a weighted graph G is given,
and let S be the collection of possible cuts, then (S, f, 1) is a MaxCut instance with
objective function f defined in (2.3), and an optimal solution is a cut with maximal
cutting benefit.

2.2.4 Knapsack problem

Suppose that there are n items which are tagged as 1, . . . , n, and the i-th item is of
weight wi and of value vi, and there is only one knapsack which has a weight limitation
w. The knapsack problem (KP) is a problem which concerns finding a way to pack some
of the items into a knapsack such that the total weight of items packed is less than or
equivalent to the weight limitation, but the total value is as large as possible.

Given a collection of n items which have values vector (vi)n and weights vector (wi)n,
and a knapsack with weights limitation w. Then the corresponding KP instance is
(S, f, 1) with each s ∈ S is a subset of the items collection which has total weights
less than or equals to the limitation w, and f is the total value, i.e.

f(s) :=
∑
i∈s

vi for each s ∈ S. (2.4)

1An injection π from A to B is a map such that for any a, b ∈ A a 6= b⇒ h(a) 6= h(b).
2The indicator function 1A(·) for a set A is defined as: 1A(x) = 1 if x ∈ A, otherwise 1A(x) = 0.
3A partition of a set A is pair (A1, A2) such that A1 ∪A2 = A and A1 ∩A2 = ∅.
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2.3 Heuristic search

CO instances belonging to the same problem may have a similar structure on solutions
spaces (feasible sets). Thereby, it is possible to solve them by a unified method. And the
method here is finally translated into a search algorithm or procedure. Extensively, an
algorithm is a list of instructions which can be executed one by one and eventually achieve
a specified task. Here, we can consider an algorithm to a problem as a black box which
may contain a specified sequence of operations, such that for any input instance of that
problem it outputs a feasible (optimal or near-optimal) solution to that instance. In this
Section, we shall make a brief introduction to the so-called heuristic search algorithms
(namely, heuristics).

2.3.1 Search algorithms in combinatorial optimization

Generally, algorithms for CO are of three types: exact algorithms, approximation algo-
rithms and heuristic search algorithms.

Exact algorithms [Woe03] are those which guarantee to output an optimal solution
for all input instances, examples are some brute-force search algorithms [Tra84]. These
algorithms often use a ‘clever’ enumeration strategy to explore the whole feasible set.
One disadvantage of these algorithms is that they may require a prohibitive running
time in the case of a relatively large problem size.

Approximation algorithms [WS11] are often much more efficient than exact algorithms.
They do not guarantee to output an optimal solution. But they can guarantee on
qualities of the output solutions. By a sophisticated study on some features of the
underlying problem, these algorithms may employ some ‘particular’ tactics to drive an
efficient search in the feasible set, and control the relative errors of the output objective
values in a ‘low’ level. An obstacle here is that they may require much prior knowledge
on the structure of the underlying problem or its solutions. Therefore, an approximation
algorithm for a particular problem can not apply easily to other problems.

In English, the word ‘heuristic’ means allowing someone to discover things by his/her
self and learning from his/her own experience. Similarly, in optimization, heuristic
search algorithms refer to these ‘intelligent’ or ‘self-adaptive’ search procedures which
may start from a purely random search or some fixed solution(s), then automatically
accumulate knowledge from their search history (typically some information concealed
in good solutions seen) and again use this knowledge to guide their subsequent search.
Similar definitions for heuristic search can be found in e.g. [SVVdW80] and [Nic07].

Examples of heuristic search are genetic algorithms [Mic96], simulated annealing
[BT93], tabu search [GL99], ant colony optimization [DS04], cross entropy algorithms
[RK04], estimation of distribution algorithms [HP11], artificial bee colony [KGOK12],
particle swarm optimization [KE95], electromagnetism-like algorithms [BF03] etc. These
algorithms are generally rather efficient, but do not guarantee on qualities of the output
solutions. However, various applications in the literature showed that they can output
high-quality solutions.

Heuristic search algorithms can apply easily to many very tough problems in op-
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erations research like vehicle routing, scheduling, tour planning etc. They are rather
portable in practice, and are often seen as general-purpose tools for optimization. Some-
times, they are even the unique tool for a practical problem, especially when the problems
are very complex.

2.3.2 A classification to heuristic search: solution-based v.s. model-based

According to [ZBMD04], heuristic search algorithms can be collected in two categories:
solution-based search (SBS) and model-based search (MBS) .

In general, solution-based heuristics may iteratively manipulate present solution(s)
hoping that better solution(s) can be found in the next round. Many traditional heuris-
tic algorithms are of solution-based type, e.g. genetic algorithms [Mic96], simulated
annealing [BT93], tabu search [GL99] etc. Here, new solutions are often produced by
changing and/or exchanging components on present solutions. For example, in a sim-
ulated annealing, new solution is often a ‘neighbor’ of the present solution which is
typically produced by changing one or several components (e.g. edges in a tour) on the
present solution; in a genetic algorithm, new solutions (children) are generated by per-
forming a crossover and a mutation on the present solutions (parents), where crossover
is typically used to exchange components on two mated parents and mutation is typi-
cally used to randomly change a component on the resulting solutions after crossover.
Therefore, new solution(s) in these traditional algorithms may preserve certain ‘good
properties’ of the present solution(s).

More recent examples of solution-based heuristics are those swarm intelligence algo-
rithms, including artificial bee colony [KGOK12], particle swarm optimization [KE95],
electromagnetism-like algorithms [BF03] etc. They aim to simulate the collective or col-
laborated behavior of a school of practical creatures or physical particles. They employ
a swarm of agents, and the agents will do ‘parallel’ searches in the feasible set. In each
iteration, each agent constructs a new solution by manipulating its present solution with
reference to its own search history and/or histories of its companions. For example, in
a particle swarm optimization algorithm, an agent may construct a new solution with
reference to both the best solution seen by itself and the global best solution seen by the
whole swarm. As a further reference to SBS, we collect genetic algorithms, simulated
annealing and particle swarm optimization in Section A.7 in the Appendix.

This thesis concentrates only on MBS algorithms. Different from SBS, they do not
concentrate on particular solutions, but on the solution-production mechanism. This
mechanism often explains the structure of the underlying problem to some extent. It
is therefore called a ‘model’ of the problem or its solutions. Typically, the model is a
distribution on the feasible set and new solutions are produced by sampling from it.
Examples of MBS cover the famous ant colony optimization [DS04], cross entropy algo-
rithms [RK04], estimation of distribution algorithms [HP11] etc. In these algorithms,
the models actually reflect an ‘empirical’ intuition where the optimal solutions are more
likely distributed. We take an ant algorithm as an example. Here, the model is a ma-
trix of the ‘pheromone’ values which serves as the generator for new solutions. Initially,
pheromones matrix is generally set to be uniform, if there is no prior information avail-
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able. This will result in a purely random search in the first iteration. This reflects an
initial intuition that every feasible solution is possible to be an optimal solution before
evaluation. After several iterations, the matrix has been empirically updated (typically
biased to some best solutions seen), it is now no longer uniform. The resulted search is
possibly biased to a particular area on the solutions space. Now, it reflects an experi-
enced intuition that the optimal solutions are more likely distributed in some particular
area.

Generally, model-based search will iteratively evolve models. In each iteration, they
sample some solutions from the present model. Then, an empirical model will be learned
from some selected ‘best’ solutions in the present sample and/or history. These solutions
are typically selected based on their qualities. Hence, the learned model may concentrate
on some good solutions. The model for next iteration is eventually constructed with
reference to the present model and the learned empirical model. It is therefore biased to
good solutions. So, we may expect that in the next sampling, more good solutions will
be generated.

A common motivation in MBS is to reach a model which can concentrate only on
optimal solutions. To achieve this, they often specify a family of candidate models. And
the evolution is generally restricted in that family. Model-based search actually result
in a search in the model family. They hope they can reach an ‘optimal’ model i.e. a
model producing optimal solutions only or with an overwhelming probability. Therefore,
intrinsically MBS optimize models. This is the most significant difference from SBS.

To further understand MBS, we will collect some popular MBS algorithms in practice
in Chapter 3.

2.3. HEURISTIC SEARCH 12



3 A short tutorial on model-based search
algorithms used in practice

As a background, we have briefly introduced CO (combinatorial optimization) and
heuristic search in last Chapter. From now on, we shall concentrate on our main topic:
MBS i.e. model-based search (heuristics). This Chapter shall serve as a (short) tutorial
for those MBS algorithms used in practice.

MBS algorithms have been applied successfully to many very tough COPs. For
example, traveling salesman problem, see [DBKMR05], [Rub99], [DMC96], [DG97b],
[OHS+11] etc; maximal cut problem, see [Rub02], [LDM09] etc; vehicle routing prob-
lem, see [CHdM05], [BHS99] etc; traffic assignment problem e.g. [ML09]; job shop
scheduling, see [SBW11], [CDMT94] etc; buffer allocation e.g. [AKRR05]. According to
their originations, MBS algorithms in practice can be collected in three classes: cross en-
tropy algorithms [RK04], ant colony optimization [DS04] and estimation of distribution
algorithms [HP11].

Cross entropy algorithm (CE) was initially motivated for rare event simulation, see
[Rub97], [Rub99] or A.6 in Appendix. It can be strictly derived by importance sampling
under the so-called Kullback-Leibler divergence, see [Rub99]. It has many variants avail-
able in the literature, see e.g. [Rub99], [CJK07], [Mar05], [WK14b]. In this Chapter, we
will concentrate on the initial version presented in [Rub99]. However, as a reference, we
will also make a very short introduction to the additional features in its variants.

Ant colony optimization (ACO) is a large class of algorithms which mimics the foraging
behavior of a colony of real ants, see [DS04] for an overview. In this Chapter, we con-
centrate only on four representative algorithms, namely ant system (AS, see [DMC96]),
ant colony system (ACS, see [DG97b]),MAX -MIN ant system (MMAS, see [SH00])
and population-based ant system (PBAS, see [GM02]). We formally define these four
algorithms. As a useful reference, we also describe the foraging behavior of real ants.

Estimation of distribution algorithms (EDA, see [HP11]) is a common name for many
algorithms which were initially motivated for efficiently simulating genetic algorithms by
probabilistic models. According to the employed models, estimation of distribution algo-
rithms can be collected in two classes: algorithms with univariate marginal models and
algorithms with multivariate marginal models. Here, univariate marginal models are dis-
tributions with independent marginals, and multivariate marginal models are those with
dependent marginals. Algorithms with univariate marginal models are e.g. univariate
marginal distribution algorithm (UMDA, see [MP96]), the population based incremental
learning (PBIL, see [Bal94]), and the compact genetic algorithm (CGA, see [HLG99]).
Algorithms with multivariate marginal models are e.g. Bayesian optimization algorithm
(BOA, see [HGC95], [PM98], [PGCP00], [PGL02], [Pel05]), bivariate marginal distribu-
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tion algorithm (BMDA, see [MP96]), mutual information maximizing input clustering
(MIMIC, see [DBIV+97]) and extended compact genetic algorithm (ECGA, see [SG00]).
Generally, it is difficult to apply an algorithm with multivariate marginal models to op-
timization problems in practice. The main reason is that learning a multivariate model
itself may require a lot of computational effort. Therefore, we will concentrate only on
algorithms with univariate marginal models.

The whole Chapter is arranged as: Section 3.1 formalize a common motivation for
these algorithms; Section 3.2 introduces the cross entropy algorithms; Section 3.3 intro-
duces the ant colony optimization algorithms; Section 3.4 introduces the estimation of
distribution algorithms.

3.1 A common motivation

As mentioned in Section 2.3.2, MBS algorithms do not concentrate on particular so-
lutions, but on models. Here, a model is a mechanism which can be used to produce
(random) solutions for a CO instance. Generally, it can be expressed as a finite list of
parameters, namely a finite vector of reals, due to the finiteness of the underlying feasible
set. Typically, it is a distribution1 on the underlying feasible set, and new solutions are
generated by sampling.

MBS algorithms often restrict their models in a specified family. A common motivation
here is that they want to find out an ‘optimal’ model from that family which may produce
optimal solutions only (or with an overwhelming probability). To achieve this, they may
arbitrarily fix an initial model in that family, and then iteratively evolve the model in
the specified family by some fixed strategies. Intrinsically, they optimize models or the
solution-production mechanism.

Assume that (S, f, 0) is the underlying CO instance. Let P be a specified family of
models on S satisfying the basic requirement that

there exists Π∗ ∈ P : Π∗ only produces optimal solutions (3.1)

where S∗ is the collection of optimal solutions. And we denote the collection of models
∈ P which satisfies (3.1) as P∗. Obviously, ∅ 6= P∗ ⊆ P under condition (3.1). Then, the
common motivation of MBS can be formally stated as an ‘optimization’ task picking out
an ‘optimal model’ Π∗ ∈ P∗ from candidates ∈ P.

To do that, these algorithms generally employ a stochastic search on P. Let Π0 ∈ P
be an arbitrarily fixed initial model. They then iteratively evolve their models through
the following three phases:

1See A. 5 in the Appendix for a formal definition of distributions.
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Crude MBS procedure

Sampling: draw a sample Xt of a specified size from current model Πt ∈ P;

Learning: learn an empirical model Wt ∈ P from some ‘best’ solutions in Xt

and/or in past iterations, by a specified learning rule;

Update: construct a new model Πt+1 ∈ P with reference to the present model
Πt and the empirical model Wt, by a specified update rule.

Here, Wt is a model concentrating on some ‘best’ solutions seen currently and/or in the
past. With reference to Wt, the next model Πt+1 can be biased to ‘good solutions’.
Thereby, we may expect that more good solutions will be produced in the next round.

Along with MBS algorithms, it is an iteratively single-start ‘local’ search procedure on
the specified model family P. Here, ‘single-start’ means that we start from a single model
and construct only one model for the next round (namely Πt+1) in each iteration. With
word ‘local’, we mean that Πt+1 is actually a ‘neighbor’ of Πt since it is constructed also
with reference to Πt. It may not be ‘far’ way from Πt on the space P. This ‘localism’
can make the movement of models smoothly on the P. It actually reflects a underlying
conservatism. We hope that Πt+1 can assimilate the good information concealing in
Wt, but we may not hope that Πt+1 is completely a copy of Wt. Otherwise, it may be
very difficult for the algorithm to escape from the local trap which may be formed by
Wt. In the remaining of this Chapter, we will further understand the motivation and
this underlying search on P through some MBS algorithms used in practice.
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3.2 Example I: cross entropy algorithm

Cross entropy algorithm (CE) is a very typical MBS algorithm. It was invented by
R.Y. Rubinstein, see [Rub99]. Initially, it was motivated for rare-event simulation in
complex network simulation, see [Rub97] or A. 6 in the Appendix. Then it was realized
as a good and generic optimization tool for both continuous and discrete optimization,
see [Rub99]. For a detailed book on CE in CO, see [RK04]. For a concise and helpful
tutorial, see [DBKMR05]. There are also several CE variants available in the literature,
see e.g. [RK04], [Mar05], [CJK07] and [WK14b]. Here, we stick on the original CE
version presented in [Rub99]. As a reference, we shall also make a short introduction to
the additional features in its variants.

3.2.1 Representation of feasible solutions

Recall that MBS algorithms optimize models instead of solutions. And the models are
restricted in a specified family. In CE, models are actually distributions on the underlying
feasible set. To explicitly express the models in CE, we need to formalize the feasible
solutions.

Without loss in generality, we assume here a minimizing CO instance (S, f, 0). Note
that any maximizing instance can be easily translated into a minimizing instance. For
example, let (S′, f ′, 1) be an maximizing instance, then (S′,−f ′, 0)2 is an minimizing
instance which has the same feasible set and optimal solutions as (S′, f ′, 1).

In CE, feasible solutions are often assumed to be fixed length strings over a finite
alphabet3, see e.g. [Rub99], [CJK07], [WK14b]. This is reasonable. Actually, for each
CO instance, we can represent its feasible solutions in this fashion, due to finiteness of
its feasible set. We take an MaxCut (Maximal Cut, see Subsection 2.2.3) instance as
an example. Here, a cut (V1, V2) on the underlying graph is a partition for the vertices
V . Let n denote the size of V. Then, a cut can be uniquely represented as a string
(b1, . . . , bn) of length n over the alphabet {0, 1}, if we employ a rule (encoding) that

bi =

{
0 if the i-th vertex ∈ V1,

1 otherwise,

for each i = 1, . . . , n. Therefore, we now think that each feasible solution s ∈ S of the
underlying instance is a string (a1, . . . , aL) where each item ai ∈ A for i = 1, . . . , L, A
is a finite alphabet and L ∈ N is a fixed solutions length. Obviously, S ⊆ AL.

Generally, CE may further assume that S = AL, see e.g. [DBKMR05] and [CJK07].
Here, we follow this assumption too. Of cause, it may occur that S 6= AL in practice.
If this is the case, we can assign a penalty objective value to those infeasible strings so
as to make all strings in AL ‘feasible’. We can employ an arbitrary value vmax as the
penalty value where

vmax > fmax = max
{
f(s)

∣∣ s ∈ S}.
2Here, −f ′ is a function defined as −f ′(s) = −1 · f(s) for each s ∈ S′.
3An alphabet is a set of items, typically these items are letters.
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Then, (S, f, 0) can be extended into an CO instance (AL, f ′, 0) with

f ′(s) =

{
f(s) if s ∈ S,
vmax otherwise i.e. s is infeasible.

We can equivalently solve (AL, f ′, 0) instead of (S, f, 0).

3.2.2 The specified model family for cross entropy algorithm

With the above representation i.e. S = AL for some finite A and L ∈ N, we are now
ready to show the commonly used models in CE. Let P(A) be the class of all possible
distributions on the alphabet A for the underlying instance (S, f, 0). Obviously, each
π ∈ P(A) can be represented as a vector of length |A| over R+ ∪ {0}, i.e.

π =
(
π(a)

)
a∈A with each π(a) ≥ 0 and

∑
a∈A

π(a) = 1.

It describes a mechanism for producing random items or letters fromA. We define further
that

Pce := P(A)× P(A)× · · · × P(A) = P(A)L. (3.2)

Generally, CE algorithms specify Pce as the model family.
Obviously, each model Π =

(
Π(1), . . . ,Π(L)

)
∈ Pce with each Π(i) ∈ P(A) is a

product distribution on the product space AL = A × · · · × A. And a random string
s = (a1, . . . , aL) ∈ AL is then sampled with a probability

Π(s) =
L∏
i=1

Π(i)
(
ai
)
,

where observe that Π(i) =
(
Π(i)

(
a
))

a∈A
∈ P(A), for each i = 1, . . . , L, describing a

selection in the collection A. Of cause, Π can also be written in details as a vector of
reals

Π =
(
Π(i)

)
i=1,...,L

=
(
Π(a; i)

)
a,∈A;i=1,...,L

with Π(a; i) := Π(i)
(
a
)
.

Actually, P(A) is a closed continuous space i.e. it can be identified as a closed con-
tinuous region on the Euclidean Space Rn where n = |A|. For example, when |A| = 3,
P(A) can visually drawn as the gray triangular on Figure 3.1. Since Pce = P(A)L with
L < ∞, Pce is then also continuous. Moreover, Pce is closed under limits i.e. for any
convergent sequence

(
Πm

)
m∈N with each Πm ∈ Pce, we have

lim
m→∞

Πm ∈ Pce.

It is not difficult to see that the family Pce satisfies the basic requirement (3.1) for
MBS model family. Let s∗ = (a∗1, . . . , a

∗
L) ∈ S∗ be an optimal solution of the underlying

3.2. EXAMPLE I: CROSS ENTROPY ALGORITHM 17



Ph. D Thesis Technical University of Clausthal

x(1, 0, 0)

y

(0, 1, 0)

z
(0, 0, 1)

Figure 3.1: A visualization of P(A) for |A| = 3

instance and Π∗ =
(
Π(1)∗, . . . ,Π(L)∗

)
with each Π(i)∗ defined

Π(i)∗(a) :=

{
1 if a = a∗i ,

0 otherwise,
for i = 1, . . . , L.

Then Π∗(S∗) = 1 and Π∗ ∈ Pce. Now, we denote the collection of all Π ∈ Pce with
Π(S∗) = 1 as P∗ce. Evidently, ∅ 6= P∗ce ⊆ Pce.

3.2.3 The algorithm

As formulated above, we assume here that the underlying CO instance is (S, f, 0) with
S = AL where A is a finite alphabet and L is a fixed solutions length. We take the
product distributions family Pce on AL as the specified model family.

CE is a very typical MBS algorithm. It aims to find out an optimal model Π∗ ∈ P∗ce.
Starting from an arbitrarily fixed initial model Π0 ∈ Pce, it then iteratively improves the
present model by shifting it towards its sampled elite solutions. It first draws a sample
Xt from the present model Πt ∈ Pce, and estimates an empirical model Wt ∈ Pce from
a fixed number of elite solutions in Xt. Then, it constructs the model Πt+1 ∈ Pce for the
next round as a convex combination of Πt and Wt i.e. in a vector level

Πt+1 = (1− ρ)Πt + ρ ·Wt

where ρ ∈ (0, 1) is a fixed smooth parameter. Since Wt is the empirical distribution of
elite solutions, Πt+1 will be biased to these solutions. Hence, we may hope that more
good solutions can be sampled in the next round. The smooth parameter ρ takes a
crucial role. It reflects the relative impact of Wt in the combination.

Now, we define the CE algorithm presented in [Rub99] in details.The input parameters
for CE are:

• a uniform starting model Π0 ∈ Pce;
• a constant smooth parameter ρ ∈ (0, 1);

• a fixed sample size N ∈ N;

• a small elite rate α ∈ (0, 1) with α ·N ≥ 1.
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CE strictly obeys the crude MBS procedure described on p. 15. The three phases here
can be defined in details as following.

Algorithm: cross entropy

Sampling: We generate a random sample Xt =
(
X

(1)
t , . . . ,X

(N)
t

)
from the present

model Πt =
(
Πt(i)

)
i=1,...,L

∈ Pce. Here, each X
(j)
t is a random string in AL

and can be represented in details as(
X

(j)
t (1),X

(j)
t (2), . . . ,X(j)(L)

)
where each X

(j)
t (i) is a random item in A chosen independently by Πt(i) for

i = 1, . . . , L.

Learning: We calculate the objective values of the sampled solutions in Xt, and
order them as

f(X
(n1)
t ) ≤ f(X

(n2)
t ) ≤ · · · ≤ f(X

(nN )
t ).

We pick out the best bα ·Nc solutions and collect them in N b
t i.e.

N b
t =

{
X

(n1)
t , . . . ,X

(nbα·Nc)
t

}
where α ∈ (0, 1) is the fixed elite rate. For each item a ∈ A and position
i ∈ {1, . . . , L}, we calculate a relative frequency Wt(a; i) in the elite solutions
N b
t as

Wt(a; i) :=

∑bαNc
j=1 1{a}

(
X

(nj)
t (i)

)
bαNc . (3.3)

And then, we collect all these frequencies in

Wt :=
(
Wt(1), . . . ,Wt(L)

)
=
(
Wt(a; i)

)
a∈A;i=1,...,L

(3.4)

with each Wt(i) :=
(
Wt(a; i)

)
a∈A for i = 1, . . . , L.

Update We construct the next model Πt+1 as a convex combination of Πt and Wt

i.e.
Πt+1 = (1− ρ)Πt + ρWt (3.5)

In details,
Πt+1(a; i) = (1− ρ)Πt(a; i) + ρWt(a; i) (3.6)

for each a ∈ A and i = 1, . . . , L.

To make the above algorithm more clearly, a pseudo code is listed in Figure 3.2 on p.
22.

Note that, each Wt(i) =
(
Wt(a; i)

)
a∈A in the above algorithm is actually a distribu-
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tion on A, since

∑
a∈A

Wt(a; i) =
∑
a∈A

∑bαNc
j=1 1{a}

(
X

(nj)
t (i)

)
bαNc =

∑bαNc
j=1

∑
a∈A 1{a}

(
X

(nj)
t (i)

)
bαNc

=

bαNc∑
j=1

1

bαNc = 1.

Thereby,
Wt =

(
Wt(1), . . . ,Wt(L)

)
=
(
Wt(a; i)

)
a∈A;i=1,...,L

is a model in Pce. Actually, Wt maximizes the likelihood function of elite solutions N b
t

i.e. it maximizes
bα·Nc∑
j=1

lnW(X
(nj)
t ) for W ∈ Pce. (3.7)

Moreover, it is also the model in Pce which is closest to the truncate distribution

W∗
t (s) =

1{s′∈S|f(s′)≤γt}(s)Πt(s)∑
s′′∈S 1{s′∈S|f(s′)≤γt}(s

′′)Πt(s′′)
for each s ∈ S (3.8)

under the so-called Kullback-Leibler distance (see A. 2 in the Appendix) where γt =

f
(
X

(nbα·Nc)
t

)
, see [Rub99] for a proof.

Since Wt ∈ Pce and Πt ∈ Pce, Πt+1 is also a model in Pce under update (3.5) and
(3.6). And since Wt approximates the truncate distribution (3.8), Πt+1 is biased to
the solutions having objective value smaller than γt. Thereby, we can hope that more
solutions of objective value smaller than γt can be sampled in the next round. The
smooth parameter ρ reflects the relative importance of the empirical distribution Wt in
the update (3.5). It almost dominates the asymptotic behavior of CE, for details see
[WK14b].

The algorithm actually results in a random walk on the continuous space Pce. We start
from an initial model (uniform) Π0 ∈ Pce. And in each subsequent iteration, we move
the present model Πt to a ‘neighbor’ Πt+1. The move is made smoothly through the
update (3.5). The neighbor Πt+1 is constructed in a way that it not only preserves some
‘local’ information in Πt with a rate 1− ρ, but also assimilates some ‘elite’ information
(note that Wt is an approximation of (3.8)) with a rate ρ.

3.2.4 A brief introduction to CE variants

There are also some CE variants, e.g. CE with time-dependent smooth parameters
(CE/tdsp, [CJK07]), Ant-like CE (CE/ant, [WK14b]), fully adaptive CE (FACE, [RK04]),
graph-based CE with time-dependent smooth parameters (GBCE/tdsp, [Mar05]) and
graph-based CE with lower bound on distributions (GBCE/lb, [Mar05]). The essential
features of these algorithms are covered in the defined CE. Now we make an introduction
to their additional features.
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The unique additional feature in CE/tdsp is that it does not employ a fixed smooth pa-
rameter, but a sequence of smooth parameters

(
ρt
)
t≥1

. And the update (3.5) is therefore
changed to

Πt+1 = (1− ρt+1)Πt + ρt+1Wt

where Πt is the present model and Wt is calculated by (3.3) and (3.4). Ant-like CE is
an extension of CE/tdsp. It introduces a ‘feasibility distribution’ concept into the above
‘Sampling’ phase. This concept is inspired by the so-called ‘visibility’ in ant colony
optimization. In the next Chapter, we shall formally introduce this. GBCE/tdsp is a
variant of CE/tdsp. It estimates Wt only from the best solution found in history.

The additional feature in FACE is that it does not fix the sample size. It allows the
sample size to vary within a fixed range. In the end of each iteration, it sets the next
sample size based on N b

t . In other word, it employs dynamic sample size.
GBCE/lb is a variant mimicking MAX -MIN ant system. It introduces a constant

lower bound pmin to restrict each entry Πt+1(a; i) in Πt+1 after the update (3.5) i.e. if
Πt+1(a; i) < pmin, set Πt+1(a; i) = pmin.
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Algorithm Cross entropy algorithm in combinatorial optimization

a) set t = 0, initialize Π0 ∈ Pce and design a stop criterion STOP ;

b) draw a random sample Xt = (X
(1)
t , . . . ,X

(N)
t ) by the present dis-

tribution Πt ∈ Pce where each X
(j)
t =

(
X

(j)
t (1), . . . ,X

(j)
t (L)

)
∈

AL;

c) evaluate each solution in Xt according to the objective function
f, and order them as

f(X
(n1)
t ) ≤ · · · ≤ f(X

(nN )
t ),

then set N b
t := {X(n1)

t , . . . ,X
(nbαNc)
t } to be collection of best

bαNc many solutions;

d) construct an empirical distribution Wt ∈ Pce with each entry

Wt(a; i) =

∑bαNc
j=1 1{a}

(
X

(nj)
t (i)

)
|N b

t |

for a ∈ A and i = 1, . . . , L, and then set

Πt+1 = (1− ρ)Πt + ρ Wt;

e) while STOP does not hold

e 1) set t = t+ 1;

e 2) repeat steps b)-e);

Figure 3.2: Cross entropy algorithm in combinatorial optimization
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3.3 Example II: ant colony optimization

Ant colony optimization (ACO) is a large class of MBS algorithms which mimics the
foraging behavior of a colony of real ants, see [DS04] and [DS10] for an overview. Here,
we concentrate on four representative ACO algorithms: ant system, ant colony system,
MAX -MIN ant system and population-based ant system. For a reference of other
ACO algorithms, see [DS04].

A(20)

C(0)

B(0)

d = 1, τ = 1 10 ants

d = 1, τ = 1

d = 1, τ = 110 ants

(a) t = 0

A(0)

C(10)

B(10)

τ = 0

τ = 0 10 ants

τ = 010 ants

(b) t = 1

A(10)

C(0)

B(10)

τ = 0

τ = 0 10 ants

τ = 910 ants

(c) t = 2

A(0)

C(10)

B(10)

τ = 0 10 ants

τ = 9

τ = 810 ants

(d) t = 3

A(20)

C(0)

B(0)

τ = 9 7 ants

τ = 8

τ = 1713 ants

(e) t = 4

Figure 3.3: A demo of ants foraging behavior

3.3.1 The foraging behavior of ants

ACO algorithms are inspired by the foraging behavior of real ants. Hence, it is helpful
to understand this behavior before formally introducing them. Figure 3.3 above clearly
demonstrates the foraging behavior.

In practice, ants use a substance called ‘pheromone’ as a medium to communicate
with each other in foraging. When an ant finds a food source, it will deposit pheromones
on its way back to the nest. Other ants can detect the deposited pheromones, and the
higher the pheromones on a way the more possible they may follow. The pheromones
deposited on a way may also evaporate with a certain speed. These can help the ants
quickly find and concentrate on a nearest path from their nest to a food source. Figure
3.3 depicts five instants in the foraging procedure for a colony of 20 ants. Here, we
assume a nest A, a food source B, and two possible paths from the nest to the unique
food source i.e. A − C − B and A − B. On the Figure, we use d and τ to describe the
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distance and the value of pheromones respectively, e.g. in Subfigure 3.3a we write d = 1
and τ = 1 on each edge to mean that the edges are of the same length and the same
initial pheromones value. The number inside a bracket following the label of a node
represents the number of ants positioned in that node at the corresponding time. For
example, in Subfigure 3.3a (t=0) we use A(20) to mean that all ants are positioned in
node (nest) A at t = 0.

Initially (t = 0, Subfigure 3.3a), all ants are positioned in node (nest) A. Since we
deposit the same initial pheromones on edges A − C and A − B, one half of the ants
will follow A− C and others will follow A−B in expectation, see the dashed arrow on
Subfigure 3.3a.

At time t = 1 (Subfigure 3.3b), 10 ants stand in node C and other 10 ants stand in
food source B, where observe that A − C and A − B have the same length, and we
assume that all the ants walk with the same speed. Here, we also assume that in 1 unit
time, the pheromones on each edge will evaporate 1 unit. So, the pheromones value for
each edge at time t = 1 equals 0. The ants which has reached food source at t = 1 will
return back to the nest and deposit pheromones on the path they found i.e A−B. Other
ants (those in C) will continue to search for a source.

At t = 2 (Subfigure 3.3c), 10 ants returned the nest A from the source B, and 10
reached the source B from the node C. Here, we assume that each ant deposits 1 unit
of pheromones to each edge on its way back. Thereby, the pheromones value on A−B
now is 9 units, where 10 units of pheromones are deposited by the 10 returned ants,
but 1 unit of pheromones evaporated. The returned ants (those in the nest A) will still
follow path A− B in the next round, because the pheromones value on A− C is 0 (by
the evaporation) while the pheromones values on A−B is 9. And those ants arrived in
source B will return back and deposit pheromones on the path they found i.e. A−C−B.

At t = 3 (Subfigure 3.3d), the pheromones value on C − B is 9 i.e. 10 units are
deposited by the returned ants and 1 unit evaporated. And now there are again 10 ants
in source B and 10 ants in C. And the ants in source B will again go back to nest A
along path A−B, since this is still the path they found in this round.

At t = 4 (Subfigure 3.3e), all the ants returned in nest A, and now the pheromones
values on A − B and A − C are 17 units and 9 units respectively. Therefore, we can
expect that 7 ants ( 9

26 · 20 ≈ 6.92) will follow A−C and 13 ants will follow A−B in the
next round i.e. the majority of the ants will follow the shorter path A − B when they
all completed round trips.

Figure 3.3 actually depicts an ant cycle for that colony of 20 ants. Here, an ant cycle
means a time interval in which all the ants started simultaneously from their nest and
completed at least one round trip between their nest and a food source, and at least
one ant finished only one round trip. Since the length of path A − B is 1 unit and the
length of path A−C−B is 2 units, the ants following A−B can finish two round trips,
but those following A−C −B finish only one round trip in this cycle. As a result, ants
deposited totally 20 units of pheromones on A − B, but only 10 units on A − C and
C−B i.e. the amount of pheromones deposited by ants are proportional to the qualities
of the paths (reciprocal of the path length). Due to evaporation, in the end of this cycle
the remained pheromones on A − B, A − C and C − B are 17, 9, 8 units respectively.
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The shorter path (i.e. A − B) is therefore overwhelmingly attractive in the next cycle.
ACO algorithms would use this behavior as a basic idea in solving practical problems.
They see each iteration as an ant cycle, collect the pheromones on edges in a matrix
as the ‘model’ for producing random solutions. Here, a random solution is generated
in a way analogous to the construction of a path by an ant in the foraging. And the
pheromones matrix is also updated in a similar way as what the ants and evaporation
do in the foraging.

3.3.2 Representation of solutions: walks on a construction graph

To apply the foraging behavior, we first need to construct a graph for the underlying
CO instance such that each feasible solution can be represented as a walk on that (con-
struction) graph. Here, a graph G (see also A. 1 in the Appendix) is a pair (V,E) where
V is a finite set of vertices and E ⊆ {(v1, v2) | v1 ∈ V, v2 ∈ V }. And a walk W on G is a
sequence v1, (v1, v2), v2, (v2, v3), v3, . . . , (vk−1, vk), vk such that

• vi ∈ V for each i = 1, . . . , k,

• each pair (vi, vi+1) ∈ E for i = 1, . . . , k − 1.

Obviously, walk W can be identically represented as a string of vertices v1, v2, . . . , vk. If
E satisfies that

∀v1 ∈ V and v2 ∈ V (v1, v2) ∈ E ⇒ (v2, v1) ∈ E,

we call G as a undirected graph and each pair in E as an edge. Otherwise, we call each
pair in E as an arc and the graph as a directed graph. Figure 3.4 below shows examples
of an undirected graph and a directed graph. Here, two graphs have the same vertices
V = {v1, v2, v3, v4}, an edge is drawn as a line (Subfigure 3.4a) and an arc is drawn as
a line with arrow (Subfigure 3.4b).

v1 v2

v3
v4

(a) undirected graph

v1 v2

v3
v4

(b) directed graph

Figure 3.4: Examples of graphs

Formally, we say that a (directed) graph G = (V,E) is a construction graph for a CO
instance (S′, f ′, 0) (similarly for the maximizing case) under map Φ if (see also Definition
3.1 in [Gut00])

• there is a unique vertex v0 ∈ V which is marked as a starting vertex ;

• let W be the collection of those walks W satisfying the following conditions

a) W starts at v0,

b) W traverses (contains) each vertex at most once,
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c) let e be the end vertex of W, then

∀v ∈ V : (e, v) ∈ E ⇒ v has been traversed by W,

d) Φ : S′ 7→ W is a bijection4.

Let G = (V,E) be a construction graph for a CO instance (S′, f ′, 0). We shall call each
walk on G satisfying a)-c) as a legal walk to that instance. By condition b), a legal walk
can contain at most |V | <∞ many vertices. And by condition c), a legal walk can not be
continued without conflicting condition b). For example, there are only two legal walks
on Subfigure 3.4b (v1, v2, v3, v4) and (v1, v3, v4) where we identify v1 as the start vertex.
Although (v1, v2), (v1, v2, v3) and (v1, v2, v3, v2) are walks, they conflict either condition
b) or condition c).

In practice, it may be convenient for us to represent a CO instance through a graph.
Typical examples are those tour planning problems in Operations Research like TSP.
Here, we can arbitrarily fix a starting vertex, and then a legal walk is a walk which
starts from the starting vertex and traverses all vertices exactly once. Actually, for an
arbitrary CO instance it is also possible for us to construct a graph although this may not
be efficient. Let (S′′, f ′′, 0) be an arbitrary instance, we can define a graph G = (V,E)
that V = S′′

⋃{♣} and E = {(♣, s) | s ∈ S′′} where ♣ /∈ S′′ is a symbol. Then G is a
construction graph for (S′′, f ′′, 0) with the unique starting vertex ♣.

Now, we introduce some auxiliary definitions and notations related to construction
graph. We call a walk on a construction graph G which satisfies conditions a)-b) as a
partial legal walk. Let y = (v0, v1, . . . , vn) be a partial legal walk, then we shall use
VFeasible(y) to notate the collection of all the vertices v ∈ V making (v0, . . . , vn, v) a new
partial legal walk. Of cause, VFeasible(y) = ∅ implies y is a (completed) legal walk. And
we shall refer to each vertex in VFeasible(y) as a feasible continuation to walk y provided
VFeasible(y) 6= ∅.

In the sequel of this Section, we assume without loss in generality that the underlying
CO instance is an minimizing instance with objective function f and feasible set S =W
where W is the collection of legal walks on a construction graph G = (V,E). And we
assume further that v0 is the unique start vertex on G for all legal walks.

3.3.3 Ant System: the first ACO algorithm

Now, we are ready to formally define ACO algorithms. Here, we start with ant system.
Ant system (AS), see [DMC96], is the first ACO algorithm. It completely mimics the
ant foraging behavior. Other ACO algorithms can be seen as variants of this algorithm.

The definition of ant system

AS employs a fixed number of artificial ants to iteratively construct random walks on
the underlying graph G = (V,E), and the corresponding search mimics completely the
foraging behavior. AS identifies v0 (the start vertex) as the unique nest for those artificial

4A bijection g : A 7→ B is an injection such that for any y ∈ B there is an x ∈ A with y = g(x)
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ants. And an iteration is seen as an ant cycle. The difference here is that each artificial
ant may walk on G only once in each cycle. Initially, a fixed amount of pheromones is
deposited on each arc ∈ E. And in each cycle (iteration), all the (artificial) ants start
from the fixed nest (i.e. v0) and independently construct (random) legal walks. When
an ant finished a partial legal walk, it may choose a feasible continuation according to a
probability proportional to the present pheromones. After all ants completed their (legal)
walks, the objective values of the walks are calculated, and the present pheromones on
each arc ∈ E evaporate with a fixed rate (i.e. evaporation rate). Finally, each ant
deposits an amount of new pheromones on arcs it traversed in this cycle and the amount
is based on the qualities of the constructed walk i.e. the better the walk the more
pheromones it deposits. Here, the end vertex of a legal walk is thought as a food source
and the objective value is seen as the distance from the nest to that source.

Generally, AS takes four input parameters:

• a fixed number N ∈ N of artificial ants;

• a fixed evaporation rate ρ ∈ (0, 1);

• a constant initial pheromones value c0 > 0 for each arc ∈ E;

• a positive decreasing assessment function g : R 7→ R+.

Then each of its iterations can be formally defined as following, where we use τt(a, b) to
represent the pheromones value on arc (a, b) ∈ E in iteration t ∈ N and τ0(a, b) = c0 for
each arc (a, b) ∈ E.

In the below algorithm, legal walks may be of a different length i.e. may contain
different number of vertices. Therefore, we use nj to represent the number of vertices
contained in the j-th legal walk in an iteration. Note that, this nj is a variable, because
the j-th legal walks in different iterations may have different numbers of vertices.
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Algorithm: ant system

Construction of Walks: The N artificial ants independently construct N random le-

gal walks X
(1)
t , . . . ,X

(N)
t . Here, each legal walk X

(j)
t =

(
v0, v1, . . . , vnj

)
starts

from v0 and is constructed stepwise with each vi+1 chosen according to proba-
bilities

P
[
v | y

]
=

{
τt(vi,v)∑

v′∈VFeasible(y)
τt(vi,v′)

if v ∈ VFeasible(y),

0 otherwise,
(3.9)

where y = (v0, v1, . . . , vi) and nj is number of those vertices on walk X
(j)
t other

than v0, for i = 0, . . . , nj − 1 and j = 1, . . . , N.

Evaluation of Walks: Calculate the objective value f
(
X

(j)
t

)
as well as the assessment

value g
(
f
(
X

(j)
t

))
for each j = 1, . . . , N. Since g is decreasing, the assessment

values actually reflect the qualities of the constructed walks.

Evaporation of Pheromones: The present pheromones on each arc evaporate with a
rate ρ, i.e. for each arc (a, b) ∈ E

τt(a, b) = (1− ρ)τt(a, b). (3.10)

Deposition of Pheromones: Each ant deposits an amount of new pheromones on the
traversed arcs and the amount is exactly the assessment value of its constructed
walk, thereby the deposited pheromones ∆t(a, b) on an arc (a, b) ∈ E in this
cycle (iteration) can be calculated as

∆t(a, b) =
N∑
j=1

1{W∈W | (a,b)∈W}
(
X

(j)
t

)
· g
(
f
(
X

(j)
t

))
(3.11)

where W is the collection of all possible legal walks on the underlying graph G,
the notation (a, b) ∈W means arc (a, b) is on walk W . As a result, pheromones
on an arc (a, b) ∈ E for the next cycle shall be

τt+1(a, b) = τt(a, b) + ∆t(a, b). (3.12)

In application, we often incorporate the above two steps ‘Evaporation of Pheromones’
and ‘Deposition of Pheromones’ into a single step called ‘Update of Pheromones’. And
then the next pheromones on each arc (a, b) ∈ E are calculated by

τt+1(a, b) = (1− ρ)τt(a, b) + ∆t(a, b) (3.13)

where τt(a, b) represents the pheromones on (a, b) in the beginning of iteration t, and
∆t(a, b) is defined in (3.11). As a further reference, the pseudo code of this algorithm is
listed in Figure 3.5 on p. 33.
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An additional feature for some particular problems: the visibility

In practice, some greedy information for stepwisely constructing a random solution may
be available. To take advantage of these information, AS may add a ‘visibility’ concept
in the above ‘Construction of Walks’.

Now, we employ the famous traveling salesman problem as an example. Assume that
the underlying graph G = (V,E) is fully connected i.e. E = {(a, b) | a ∈ V, b ∈ V }, and
d : E 7→ R+ is a distance (weighted) function on G. An optimal solution here is just a
shortest Hamiltonian circle on G. Note that each Hamiltonian circle actually corresponds
to a legal walk on G if we fix a vertex in V as the unique starting vertex v0. Then the
corresponding objective value for a legal walk W = (v0, a1, . . . , an) is

f(W ) = d(v0, a1) +
n−1∑
i=1

d(ai, ai+1) + d(an, v0)

where we assume further that V = {v0, a1, . . . , an} for some n ∈ N. Due to the particular
form of this objective function, it is reasonable to continue a partial legal walk with a
more close feasible continuation. To cover this idea, AS may assume that each artificial
ants can detect not only the pheromones on an arc but also the length of that arc
i.e. they can visually compare the distances from their current positions to the feasible
continuations by their eyes. Then, an ant can select a feasible continuation according to
a mixture of the pheromones and the distances. Formally, the choice probability (3.9)
for a feasible continuation therefore becomes

P
[
v | y

]
=


[
τt(vi,v)

]α[ 1
d(vi,v)

]β
∑
v′∈VFeasible(y)

[
τt(vi,v′)

]α[ 1
d(vi,v′)

]β if v ∈ VFeasible(y),

0 otherwise,

(3.14)

where y = (v0, v1, . . . , vi) is partial legal walk with i < n and each vi ∈ V, the VFeasible(y)
here is actually V −{v0, v1, . . . , vi}, d(vi, v) represents the length of arc (vi, v), α > 0 and
β > 0 are two fixed constants reflecting the relative importance of pheromones infor-
mation and distances information respectively. We shall refer to (3.14) as the ‘visibility
case’.

With (3.14) instead of (3.9) in ‘Construction of Walks’, it may result in a dynamic
balance of the empirical information (pheromones) and the prior greedy information
(distances). Initially, since pheromones on arcs are of the same value (i.e. τt(a, b) ≡ c0),
the distances shall dominate the choice probability (3.14). The algorithm may therefore
perform like a randomized greedy search procedure in an early stage. Hereafter, due to
the accumulated empirical information, the role of the greedy information in (3.14) may
weaken. The underlying search then is guided by a mixture of the empirical and greedy
information. In our theoretical study, we shall show that the empirical information may
gradually dominate the search in a long term.

Similarly, the visibility concept can be carried over to other problems which have a
similar greedy information. Actually, it can be made more extensive so as to capture
all problems. However, we shall leave this issue to Section 4.2. In the remaining of this
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Section, we stick only to the non-visibility case. Note that, all other ACO algorithms
can include the visibility in a similar way.

On the models

Now, we collect all the pheromones τt(a, b) in a matrix

Γt =
(
τt(a, b)

)
a∈V,b∈V,(a,b)∈E

for each iteration t ∈ N in the defined algorithm (see p. 28). Then, Γt is the so-
called pheromones matrix for iteration t. Obviously, Γt serves as a generator for random
solutions in iteration t, see (3.9) or (3.14). Thereby, they are the models in AS. Now,
we define that

Paco =

{
Γ

∣∣∣∣ Γ =
(
τ(a, b)

)
a∈V,b∈V,(a,b)∈E

τ : E → R+ is a real function

}
(3.15)

where E is the collection of all possible arcs on the underlying graph. Of cause, Paco
meets the basic requirement (3.1) for MBS model family i.e. it contains a model which
can produce only optimal legal walks. It is actually the model family for AS.

3.3.4 Ant colony system

Ant colony system (ACS), see [DG97b], is an extension of AS. It also covers some features
from Q-Learning [GD+95]. Similar to AS, it formulates the feasible solutions of the
underlying CO instance as legal walks on a construction graph and mimics the ant
foraging behavior. However, it does not directly inherit the choice probability (3.9)
or (3.14) for an ant to choose a feasible continuation, but employs a so-called pseudo
random proportional rule to guide the choice. Moreover, the update of pheromones here
is based not only on the present walks (locally), but also on the best walk found so far
(globally).

According to a pseudo random proportional rule, an ant may choose a feasible con-
tinuation v ∈ V as

v =

{
argmaxa∈VFeasible(y)τt(vi, v) if u ≥ q,

b if u < q,
(3.16)

where y = (v0, v1, . . . , vi) is the partial legal walk constructed, u is a random variate
uniformly distributed over [0, 1], q ∈ (0, 1) is a constant fixed in advance, and b is
a random vertex chosen according to (3.9) or (3.14) in the visibility case. ACS uses
this rule to stepwisely construct a legal walk in ‘Construction of Walks’. And after an
ant completes a legal walk W = (v0, v1, . . . , vn), the ant will immediately change the
pheromones on each arc belonging to W by applying a so-called local update, i.e. for
each i = 0, . . . , n− 1

τt(vi, vi+1) = (1− ρlocal)τt(vi, vi+1) + ρlocal · c1 (3.17)
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where ρlocal ∈ (0, 1) is a fixed local evaporation rate, and c1 > 0 is a fixed incremental of
pheromones.

After all ants complete their walks, the walks are evaluated and the best found walk
XBF
t is updated i.e. XBF

t is the best solution among all the walks constructed in
iterations 0, 1, 2, . . . , t. Then, a global update is applied according to XBF

t , i.e. for any
arc (a, b) ∈ E,

τt+1(a, b) = (1− ρglobal)τt(a, b) + ρglobal∆t(a, b) (3.18)

where ρglobal is a fixed global evaporation rate, and

∆t(a, b) =

{
g
(
f(XBF

t )
)

if (a, b) ∈ XBF
t ,

0 otherwise.
(3.19)

with g is a fixed assessment function. See Figure 3.6 on p. 34 for a pseudo code of ACS.

3.3.5 MAX -MIN ant system

MAX -MIN ant system (MMAS), see [SH00], is a variant of AS. Similar to AS, it
also employs the choice probability (3.9) or (3.14) (for the visibility case) for an ant to
choose a feasible continuation. However, it employs a fixed upper bound τmax > 0 as
well as a fixed lower bound τmin > 0 to restrict pheromones in each iteration. Moreover,
new pheromones are deposited only on those arcs which belongs to the best walk found
or iteration best walk.

In more details, we assume that all ants have completed their walks according to choice
probability (3.9) or (3.14) in a iteration t i.e. the step ‘Construction of Walks’ on page
28. Then all constructed walks are evaluated, and the best found walk XBF

t as well as
the iteration best walk XIT

t are updated i.e. XIT
t is the best walk among the constructed

walks in the present iteration. To update the pheromones, MMAS randomly chooses
a solution Xupd

t from {XIT
t ,XBF

t }, and sets τt+1(a, b) for all (a, b) ∈ E as

τt+1(a, b) =

{
max

{
(1− ρ)τt(a, b), τmin

}
if (a, b) /∈ Xupd

t ,

min
{

(1− ρ)τt(a, b) + ρ · g
(
f(Xupd

t )
)
, τmax

}
otherwise.

(3.20)

where ρ ∈ (0, 1) is a fixed evaporation rate, g is a fixed assessment function, τmin > 0
and τmax > 0 are fixed pheromones lower bound and upper bound. See Figure 3.7 on p.
35 for a pseudo code of MMAS.

3.3.6 Population-based ant system

Population-based ant system (PBAS), see [GM02], is a further variant of MMAS. It
constructs random solutions (i.e. legal walks) by the same approach as AS andMMAS.
And it covers the main feature of MMAS, i,e. it also restricts the pheromones. But it
uses a different (pheromones) update mechanism. It does not use evaporation, and only
rewards the solutions which are stored in an archive. The archive is designed to store
iteration best solutions for some past iterations. Initially, the archive is empty. Then in
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each iteration, the present iteration best solution is added to this archive, and an amount
of pheromones are deposited on each arc belonging to this solution. When the archive
reaches a specified size, one solution in the archive shall be kicked out by a specified
out rule, and the pheromones which are deposited by this solution are simultaneously
removed.

Now, we introduce PBAS in details. Assume that the archive is of size K ∈ N. In
each iteration t < K, it first constructs a fixed number of random legal walks according
to the step ‘Construction of Walks’ (see the defined AS on p. 28). Then the present
iteration best walk XIT

t is added to the archive, and the pheromones τt+1(a, b) on an arc
(a, b) ∈ E for next iteration is calculated as

τt+1(a, b) =

{
τt(a, b) + τmax−c0

K g
(
f(XIT

t )
)

if (a, b) ∈ XIT
t ,

τt(a, b) otherwise,
(3.21)

where c0 > 0 is the initial pheromones value on each arc, τmax > 0 is a fixed pheromones
upper bound, g is the assessment function, and XIT

0 , . . . ,XIT
t are the iteration best

solutions stored in the present archive.
In each subsequent iteration (i.e t ≥ K), after all random solutions are constructed, a

solution which is determined by an out rule is removed from the present archive. And the
pheromones added according to this solution in previous are simultaneously removed.
Let Xout represent the removed solution, then the pheromones are changed as

τt(a, b) =

{
τt(a, b)− τmax−c0

K g
(
f(Xout)

)
if (a, b) ∈ Xout,

τt(a, b) otherwise.
(3.22)

Then, the iteration best solution XIF
t in present iteration is added to the archive., and

pheromones τt+1(a, b) on an arc (a, b) ∈ E for next iteration is again calculated as (3.21).
Generally, there are two out rules: first in first out (FIFO) and worst out (WO).

According to FIFO, the oldest solution in the archive is removed. And with WO, we
remove the worst solution from the archive. Of cause, it is also possible to employ a
random out rule which randomly removes a solution from the archive based on solutions
qualities.

With update (3.21) and (3.22), the pheromones τt(a, b) for a iteration t ≥ K actually
equals

τt(a, b) = c0 +
τmax − c0

K

K∑
j=1

g
(
f(x(j))

)
1{(c,d) | (c,d)∈x(j)}

(
(a, b)

)
(3.23)

where x(1), . . . ,x(K) are the iteration best solutions stored in the archive in the beginning
of iteration t. Generally, the assessment function g in PBAS is often restricted to have
a range [0, 1]. Thereby, the initial pheromones value c0 may serve as a pheromones lower
bound and τmax may serve as an upper bound. So, PBAS actually covers the essential
features ofMMAS. As a further reference, we list the pseudo code for PBAS in Figure
3.8 on p. 36.
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Algorithm Ant systema

a) set t = 0, τ0(a, b) = c0 for each arc (a, b) ∈ E, select an N ∈ N, a ρ ∈ (0, 1)
and a stop criterion STOP ;

b) for j = 1 to N ;

b 1) y = (v0);

b 2) while VFeasible

(
y) 6= ∅;

• choose a feasible continuation v ∈ V by

P
(
v|y
)

=

{
τt(ny ,v)∑

v′∈VFeasible(y)
τt(ny ,v′)

if v ∈ VFeasible(y),

0 otherwise,

where ny is the end vertex of y;

• y = (y, v);

• update VFeasible(y);

b 3) X
(j)
t = y;

c) construct Γt+1 as, for all (a, b) ∈ E

τt+1(a, b) = (1− ρ)τt(a, b) + ∆t(a, b)

and

∆t(a, b) =

N∑
j=1

1{s∈S|(a,b)∈s}(X
(j)
t )g(f(X

(j)
t ));

d) while STOP does not hold

d 1) t = t+ 1;

d 2) repeat steps b)-d);

aWe only present the non-visibility case here, the visibility case is similar.

Figure 3.5: Ant system
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Algorithm Ant colony system

a) set t = 0, initialize Γ0 and a stop criterion STOP ;

b) for j = 1 to N ;

b 1) y = (v0);

b 2) while VFeasible(y) 6= ∅;
• choose a feasible continuation v ∈ V by

v =

{
argmaxv∈VFeasible(y)τt(ny, v) if u ≥ q,

b if u < q,

where ny is the end vertex of y, and b is chosen as in AS;

• y = (y, v);

• update VFeasible(y);

b 3) apply the local update

τt(a, b) = (1− ρlocal)τt(a, b) + ρlocal · c1

for each arc (a, b) ∈ y;

b 4) X
(j)
t = y;

c) update the best solution XBF
t found so far and construct Γt+1 as

τt+1(a, b) = (1− ρglobal)τt(a, b) + ρglobal∆t(a, b)

where

∆t(a, b) =

{
g(f(XBF

t )) if (a, b) ∈ XBF
t ,

0 otherwise,

for each arc (a, b) ∈ E;

d) while STOP does not hold

d 1) t = t+ 1;

d 2) repeat steps b)-d);

Figure 3.6: Ant colony system algorithm
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Algorithm MAX -MIN ant system

a) set t = 0, initialize Γ0 and select a stop criterion STOP ;

b) for j = 1 to N ;

b 1) y = (v0);

b 2) while VFeasible(y) 6= ∅;
• choose a feasible continuation v ∈ V as AS;

• y = (y, v);

• update VFeasible(y);

b 3) X
(j)
t = y;

c) calculate XIT
t ,XBF

t and select Xupd
t from {XIT

t ,XBF
t }, then construct

Γt+1 with Xupd
t as

τt+1(a, b) =

{
max

{
(1− ρ)τt(a, b), τmin

}
if (a, b) /∈ Xupd

t ,

min
{

(1− ρ)τt(a, b) + ρ · g(f(Xupd
t )), τmax

}
otherwise

for each arc (a, b) in E;

d) while STOP does not hold

d 1) t = t+ 1;

d 2) repeat steps b)-d);

Figure 3.7: MAX -MIN ant system
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Algorithm Population based ant system

a) set t = 0, initialize Γ0 and select a stop criterion STOP ;

b) for j = 1 to N ;

b 1) y = (v0);

b 2) while VFeasible(y) 6= ∅;
• choose a feasible continuation v ∈ V as AS;

• y = (y, v);

• update VFeasible(y);

b 3) X
(j)
t = y;

c) pick out the iteration best solution XIT
t from X

(1)
t , . . . ,X

(N)
t ;

d) if t ≤ K, add XIT
t to the archive, and construct Γt+1 as

τt+1(a, b) =

{
τt(a, b) + τmax−c0

K g
(
f(XIT

t )
)

if (a, b) ∈ XIT
t ,

τt(a, b) otherwise,

for each arc in E;

e) if t ≥ K, use the out rule to remove a solution from the archive, say Xout,
and

τt(a, b) =

{
τt(a, b)− τmax−c0

K g
(
f(Xout)

)
if (a, b) ∈ Xout,

τt(a, b) otherwise.

for each (a, b) ∈ E, then add XIF
t into the archive and construct Γt+1 as

step d);

f) while STOP does not hold

f 1) t = t+ 1;

f 2) repeat steps b)-f);

Figure 3.8: Population based ant system
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3.4 Example III: estimation of distribution algorithms

Estimation of distribution algorithms (EDA) are initially motivated for efficiently sim-
ulating the robust genetic algorithm through probabilistic models, see [PGL02]. For a
detailed survey on EDA, see [HP11]. Here, we concentrate only on some practical EDA
which employ the so-called univariate marginal models, e.g. univariate marginal dis-
tribution algorithm [MP96], the population based incremental learning [Bal94], and the
compact genetic algorithm [HLG99]. For some theoretical EDA which concern multivari-
ate marginal models, see the literature [HGC95], [PM98], [PGCP00], [PGL02], [Pel05],
[MP96], [DBIV+97] and [SG00] as a reference.

3.4.1 Feasible solutions and univariate models

It is rather popular in genetic algorithms [Mic96] that the feasible solutions of CO
instances are represented as binary strings of a fixed length. As EDA are motivated for
simulating genetic algorithms, they shall follow this representation. Hence, we assume
here that the underlying feasible set S ⊆ {0, 1}L for some L ∈ N. Actually, we can assume
further that S = {0, 1}L by introducing a penalty objective value for those infeasible
binary strings as discussed in CE. Thereby, we consider here, without loss in generality,
a minimizing CO instance (S, f, 0) with S = {0, 1}L for some L ∈ N.

Here, we discuss only those EDA which evolve univariate marginal models. Generally,
a univariate marginal model on {0, 1}L is a product distribution Π =

(
Π(1), . . . ,Π(L)

)
on {0, 1}L such that each Π(i) =

(
Π(0; i),Π(1; i)

)
is a Bernoulli distribution5 with

success probability Π(1; i) and failure probability Π(0; i) = 1−Π(1; i) for all i = 1, . . . , L.
And by distribution Π, a random binary string s = (b1, . . . , bL) ∈ {0, 1}L is then sampled
with a probability

Π(s) =
L∏
i=1

[
Π(0; i)

]
1{0}(bi) ·

[
Π(1; i)

]
1{1}(bi)

where we use a convention that 00 = 1. In details, we can generate a random string s =
(b1, b2, . . . , bL) sequentially by Π with each bi generated independently by the Bernoulli
distribution Π(i) for all i = 1, . . . , L. In the sequel, we shall write the family of univariate
marginal models on {0, 1}L as Pum.

Extensively, a univariate marginal model is a mechanism which produces a solution
with each of the building blocks generated independently. Here, a building block means
a component on a solution. For example, an arc is a building block of a walk; a letter
is a building block of a string. Obviously, the distributions ∈ Pce serve as univariate
marginal models in CE. However, the pheromones matrices ∈ Paco do not serve as
univariate marginal models in ACO, since the selection of a continuing arc for a partial
legal walk is dependent on the end vertex of the present partial walk.

5The Bernoulli distribution is distribution of a random variable which takes value 1 with a success
probability p ∈ [0, 1] and value 0 with probability 1− p.
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Evidently, we can simplify a univariate model Π =
(
Π(b; i)

)
b∈{0,1};i=1....,L

∈ Pum as

a vector
(
π1, . . . , πL

)
, where each πi := Π(1; i) represents the success probability in the

i-th Bernoulli distribution Π(i) for i = 1, . . . , L. Then, the corresponding probability of
generating a random string s = (b1, . . . , bL) ∈ {0, 1}L can be written as

Π(s) =
L∏
i=1

[
1− πi

]
1{0}(bi) · π1{1}(bi)i .

Of cause, there are also some EDA which employs multivariate marginal models. Ex-
amples are Bayesian optimization algorithm (BOA, [Pel05]), extended compact genetic
algorithm (ECGA, [SG00]), mutual-information-maximizing-input-clustering algorithm
(MIMIC, [DBIV+97]), bivariate marginal distribution algorithm (BMDA, [PM98]) and
factorized distribution algorithm (FDA, [MMR99]). Generally, a multivariate marginal
model is a model which concerns mutual interactions of building blocks on some positions
in the generation of a random solution. A typical example of multivariate models is the
so-called Bayesian network, which describes the mutual dependencies of different posi-
tions on a random solution through a directed graph with each node as a position and
each arc indicating a probabilistic dependency, see [PM98] for details. Although there
are some EDA which employ multivariate marginal models, they can not apply easily to
practical optimization problems. The main reason here is that learning a multivariate
marginal model (from the sampled data) itself is generally rather time consuming, for
example learning a good Bayesian network for a large data may require a prohibitive
running time. Hence, we concentrate only on those EDA with univariate marginal mod-
els.

3.4.2 Simulating uniform crossover by a univariate marginal model

EDA are initially motivated for simulating genetic algorithms through probabilistic mod-
els. Typically, they simulate the uniform crossover. As a reference, we now give a brief
introduction to this.

Crossover is a very important operator for a genetic algorithm [Mic96]. It takes a
crucial role in the performance of a genetic algorithm. Generally, it takes in two present
solutions (parents), and then produce two new solutions (children) hoping that the new
solutions can preserve good properties of their parents. For a reference to crossover, see
Section A.7 in the Appendix.

Uniform crossover is one of the most frequently used crossover operators in genetic
algorithms. Suppose that p(1) = (b1, . . . , bL) ∈ S and p(2) = (a1, . . . , aL) ∈ S are two
arbitrarily fixed binary strings, where recall that the underlying feasible set S is assumed
to be {0, 1}L. Then, uniform crossover may produce two children c(1) = (c1, . . . , cL) ∈ S
and c(2) = (d1, . . . , dL) for these two parents p(1) and p(2) by setting each

ci =

{
ai if pi < 0.5
bi if pi ≥ 0.5

and di =

{
bi if ci = ai
ai if ci = bi

(3.24)

where pi is a random variate generated by the uniform distribution on [0, 1], for i =
1, . . . , L.
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Let πi be the frequency of bit 1 in {ai, bi} i.e.

πi =
1{1}(ai) + 1{1}(bi)

2

is the relative frequency of bit 1 at position i in the two parents, for each i = 1, . . . , L.
Obviously, each ci in child c(1) can only take values in {0, 1}, since ai, bi ∈ {0, 1}. By the
uniform crossover (3.24)

P
[
ci =1

]
= P

[
ci = 1, ci = ai

]
+ P

[
ci = 1, ci = bi

]
= P

[
ai = 1, ci = ai

]
+ P

[
bi = 1, ci = bi

]
= P

[
ci = ai

∣∣ ai = 1
]
·P
[
ai = 1

]
+ P

[
ci = bi | bi = 1

]
·P
[
bi = 1

]
.

Note that in (3.24), the random event [ci = ai] is independent of [a1 = 1] and the random
event [ci = bi] is also independent of [bi = 1]. Thereby,

P
[
ci = 1

]
= P

[
ci = ai

]
·P
[
ai = 1

]
+ P

[
ci = bi

]
·P
[
bi = 1

]
= 0.5 ·P

[
ai = 1

]
+ 0.5 ·P

[
bi = 1

]
= 0.5 ·

(
P
[
ai = 1

]
+ P

[
bi = 1

])
.

Since the two parents p(1), p(2) are fixed, bi, ai are also fixed. Therefore,

P
[
ai = 1

]
= 1{1}(ai) and P

[
bi = 1

]
= 1{1}(bi).

As a result,

P
[
ci = 1

]
=

P
[
ai = 1

]
+ P

[
bi = 1

]
2

=
1{1}(ai) + 1{1}(bi)

2
= πi.

This means that each ci in child c(1) can be equivalently generated by a Bernoulli dis-
tribution with success probability πi. A similar discussion applies to each position di on
child c(2), although c(2) is completely determined by c(1).

Let Πp(1),p(2) =
(
π1, π2, . . . , πL

)
. Obviously, Πp(1),p(2) ∈ Pum is a univariate marginal

model. Producing a new solution from p(1), p(2) by uniform crossover (3.24) is then equiv-
alent to drawing a random solution from model Πp(1),p(2) . Therefore, we may simulate
uniform crossover by sampling from this univariate marginal model.

Actually, we can further think Πp(1),p(2) as a univariate marginal model learned from

the ‘sample’ {p(1), p(2)}. Then, uniform crossover in genetic algorithms may serve as
a ‘Learning-Reproducing’ procedure i.e. we learn a model from two parents and then
reproduce two children by the learned model. The EDA discussing in this Section are
just inspired by this procedure. They may extend this procedure in several directions.
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3.4.3 Univariate marginal distribution algorithm

Univariate marginal distribution algorithm (UMDA), [MP96], extends uniform crossover
(3.24) for two parents into a Learning-Reproducing procedure for ‘multi-parents’. It
wants to simulate ‘multi-parents’ crossover by univariate marginal models.

Let P = {p(1), . . . , p(n)} be a population of parents, where n ≥ 1 and

p(1) =
(
b1,1, b2,1, . . . , bi,1. . . . , bL,1

)
p(2) =

(
b1,2, b2,2, . . . , bi,2. . . . , bL,2

)
· · · · · ·

p(j) =
(
b1,j , b2,j , . . . , bi,j . . . . , bL,j

)
· · · · · ·

p(n) =
(
b1,n, b2,n, . . . , bi,n. . . . , bL,n

)
with bi,j ∈ {0, 1} for all i = 1, . . . , L and j = 1, . . . , n. In a multi-parents uniform
crossover, a child c = (c1, . . . , cL) ∈ S for these n parents can be generated as

ci = bi,ri , ri is a number randomly chosen from {1, . . . , n} (3.25)

for all i = 1, . . . , L, namely each ci is a random variable uniformly distributed over
{bi,1, bi,2, . . . , bi,j , . . . , bi,n}. Obviously, (3.25) extends the uniform crossover (3.24). To
simulate (3.25), we can learn a univariate marginal model ΠP = (π1, . . . , πL) ∈ Pum
such that each πi is the relative frequency of bit 1 at position i in the population P i.e.

πi =

∑n
j=1 1{1}(bi,j)

n
(3.26)

for i = 1, . . . , L. Then, the child c defined in (3.25) for the parents population P is
intrinsically a random solution satisfying distribution ΠP .

By (3.26), UMDA can extend the Learning-Reproducing procedure underlying the
uniform crossover for two parents to a procedure involving multi-parents. Initially, it
samples a number of random solutions by the uniform distribution ∈ Pum, and collect
them in a memory. In each subsequent iteration, UMDA shall select out some promising
solutions from the present memory as a parents population P, by a fixed choice rule.
Then, a univariate marginal model ΠP ∈ Pum is learned from P by (3.26) and some
children for P are produced by sampling from ΠP . Finally, the memory for the next
round is updated according to a memory update rule.

Formally, UMDA may take in the following as input parameters:

• a fixed memory size M ∈ N,
• a fixed parents population size n ∈ N which is often determined by a fixed selection

rate α ∈ (0, 1) i.e. n = α ·M,

• a fixed number of children N ∈ N,
• a fixed choice rule for selecting parents,

• a fixed memory update rule for maintaining the memory,
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• a initial memory M0 which contains M feasible solutions.

Each iteration t ≥ 0 of the algorithm can be defined as following. Where Mt means
memory for iteration t.

Algorithm: univariate marginal distribution algorithm

Selection: Select n parents p
(1)
t , . . . , p

(n)
t from the present memory Mt accord-

ing to the fixed choice rule, and collect them in Pt. Where each p
(j)
t =(

bt1,j , . . . , b
t
L,j

)
∈Mt with bti,j ∈ {0, 1}, for i = 1, . . . , L and j = 1, . . . , n.

Learning: Learn a model Πt =
(
πt,1, . . . , πt,L

)
∈ Pum from Pt by rule (3.26), i.e.

πt,i =

∑n
j=1 1{1}

(
bti,j
)

n

for each i = 1, . . . , L.

Reproduction: Draw a sample (children) Xt =
(
X

(1)
t , . . . ,X

(N)
t

)
of size N by model

Πt, i.e. each X
(j)
t =

(
X

(j)
t (1), . . . ,X

(j)
t (L)

)
∈ S = {0, 1}L is sampled with a

probability
L∏
i=1

π
X

(j)
t (i)

t,i

[
1− πt,i

]1−X
(j)
t (i)

for j = 1, . . . , N.

Memory Update: Build a new memory Mt+1 from children Xt and present memory
Mt according to the fixed memory update rule such that the size |Mt+1| = M.

As a further reference, we also write a pseudo code for UMDA in Figure 3.9 on p. 42.
The choice rule here is completely inherited from genetic algorithms. The frequently

used rules are: truncate selection and random selection. In truncate selection, we require
the parents size n smaller than the memory size M i.e. n ≤M, and we select the n best
solutions from memory Mt as parents population Pt. And in a random selection, each
parent in Pt shall be chosen from Mt by a distribution based on solutions qualities.

The memory update corresponds to the population update in genetic algorithms.
There are two commonly used rules: λ + µ-rule and (λ, µ)-rule. In a λ + µ-rule, we
take the M best solutions in Mt and Xt as the next memory Mt+1. In (λ, µ)-rule, we
randomly selection M solutions based on solutions qualities from Mt and Xt as the next
memory Mt+1. Of cause, we may also directly use Xt as Mt+1 in the case M = N. And
when we use the rule Xt = Mt+1 and truncate selection for parents, then the resulted
UMDA becomes a particular CE with ρ = 1.

3.4.4 Population based incremental learning

Population-based incremental learning (PBIL), see [Bal94], can be seen as a restricted
version of UMDA or a particular version of CE. It selects only the present iteration best
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Algorithm Univariate marginal distribution algorithm

a) set t=0, initialize memory M0 randomly and a stop criterion STOP ;

b) select a parents population Pt from the present memory by a fixed choice
rule;

c) build a model Πt = (πt,1, . . . , πt,L) ∈ Pum from Pt i.e. each

πt,i =

∑
s=(b1,...,bL)∈Pt bi

|Pt|

for i = 1, . . . , L;

d) draw a random sample Xt by Πt;

e) build the memory Mt+1 from Xt and Mt by a fixed memory update rule;

f) while STOP does not hold

f 1) t = t+ 1;

f 2) repeat steps b)-f);

Figure 3.9: Univariate marginal distribution algorithm

solution as parent, i.e. |Pt| = 1 and truncate selection. It directly uses the produced
children as next memory i.e. Mt+1 = Xt. The learning is similar as CE, however an
optional feature, called model mutation, may apply to the learned model.

Initially, it uses a uniform model Π−1 = (1
2 , . . . ,

1
2) ∈ Pum to produce the first memory

M0. In each iteration t ∈ N, the iteration best solution XIT
t =

(
XIT
t (1), . . . ,XIT

t (L)
)

would be picked out from Mt, a model Πt =
(
πt,1, . . . , πt,L

)
∈ Pum would be constructed

in a way similar as in CE, i.e. for each i = 1, . . . , L,

πt,i = (1− ρ)πt−1,i + ρXIT
t (i) (3.27)

where ρ ∈ (0, 1) is a fixed learning rate, and Πt−1 = (πt−1,1, . . . , πt−1,L) ∈ Pum is the
model for time t− 1. Here, observe that an empirical model ∈ Pum learned from {XIT

t }
coincides with XIT

t itself. After Πt is constructed, an optional model mutation may
apply. The model mutation functions similarly as the mutation in genetic algorithms,
i.e. both of them may introduce some purely random disturbance into the underlying
search so as to help in escaping from local traps. The commonly used model mutation
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is the so called random shift. With random shift, we mutate Πt like

πt,i =


πt,i(1− cshift) if u < rMR and v < 0.5,

πt,i(1− cshift) + cshift if u < rMR and v > 0.5,
πt,i otherwise,

(3.28)

for each i = 1, . . . , L, where cshift ∈ (0, 1) is a fixed shift range, rMR ∈ (0, 1) is a fixed
mutation rate, u and v are independent random variates uniformly distributed over [0, 1].
Finally, a number of new solutions are sampled by Πt as the next memory Mt+1. As a
reference, a pseudo code of PBIL is listed in Figure 3.10 below.

Algorithm Population-based incremental learning

a) set t=0, initialize M0 by the uniform distribution Π−1 ∈ Pum
and a stop criterion STOP ;

b) pick out the best solution XIT
t from Mt;

c) construct Πt as πt,i = (1−ρ)πt−1,i+ρX
IT
t (i) for each i = 1, . . . , L;

d) do model mutation on Πt; %optional

e) draw a new sample Mt+1 by Πt;

f) while STOP does not hold

f 1) t = t+ 1;

f 2) repeat steps b)-f);

Figure 3.10: Population-based incremental learning

3.4.5 Compact genetic algorithm

Compact genetic algorithm (cGA), see [HLG99], is a very simple algorithm which was
claimed to efficiently simulate PBIL. In each iteration, it investigates only two feasible
solutions and then shifts the distribution very slightly towards the better one. More

details, in iteration t, two random solutions X
(1)
t and X

(2)
t are sampled by a present

model Πt = (πt,1, . . . , πt,L) ∈ Pum, then it builds a Πt+1 = (πt+1,1, . . . , πt+1,L) for next
round as

πt+1,i =


πt,i if X

(1)
t (i) = X

(2)
t (i),

πt,i + 1
n if X

(1)
t (i) = 1 6= X

(2)
t (i),

πt,i − 1
n if X

(1)
t (i) = 0 6= X

(2)
t (i)

for all i = 1, . . . , L, (3.29)
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where we assume f(X
(1)
t ) ≤ f(X

(2)
t ), and n is a large integer fixed in advance. We list

cGA in Figure 3.11 below.

Algorithm Compact genetic algorithm

a) set t = 0, initialize Π0 and a stop criterion STOP ;

b) generate two random solutions X
(1)
t and X

(2)
t by Πt;

c) evaluate the two solutions, and to construct Πt+1 by

πt+1,i =


πt,i if X

(1)
t (i) = X

(2)
t (i),

πt,i + 1
n if X

(1)
t (i) = 1 6= X

(2)
t (i),

πt,i − 1
n if X

(1)
t (i) = 0 6= X

(2)
t (i)

for all i = 1, . . . , L;

d) while STOP does not hold

d 1) t = t+ 1;

d 2) repeat steps b)-d);

Figure 3.11: Compact genetic algorithm
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4 A unified model-based search framework

This Chapter serves as a foundation for the next two Chapters. We shall propose a unified
MBS framework, and formalize its underlying stochastic process. The framework covers
the essential features of the proposed MBS algorithms in Chapter 3. It is actually an
extension of the theoretical algorithms investigated in our former work [WK14b] and
[WK14a].

To present a unified framework, we first need a (unified) representation for the un-
derlying feasible solutions which may cover the used representations in practical MBS
algorithms. Recall that, feasible solutions are represented as fixed length strings over a
finite alphabet in CE and EDA, but legal walks on a construction graph in ACO. Here,
we shall again employ the former representation, i.e. we represent feasible solutions as
fixed length strings over a finite alphabet in the unified framework. In the future, we
shall refer to this representation as string encoding or string representation. In Section
4.1, we shall show that string representation actually covers the case of construction
graph.

We also need to specify a (unified) model family before presenting the framework.
Recall that, the used models families are Pce (see CE), Paco (see ACO) and Pum (see
EDA). As we choose here the string representation, we shall correspondingly specify Πce

as the model family in the framework. In Section 4.2, we shall show that under the
so-called ‘feasibility construction’, the sampling in the framework can cover sampling
methods in CE, EDA and ACO. Here, feasibility construction is a concept extending the
visibility in ACO. It can be used to efficiently sample feasible solutions, and introduce
mutual dependencies between different positions in a random solution.

With the string representation and model family Pce, we present the unified frame-
work in Section 4.3. The framework obeys the crude MBS procedure on p. 15. To
cover essential features of practical MBS algorithms, it has four virtual rules: memory
update rule, subsample selection rule, learning rule and model update rule. Each rule
may have different definitions ( implementations) in different MBS algorithms. When
we give practical definitions to the four rules, the framework may become a practical
MBS algorithm. As a reference, the used rules in practical MBS algorithms are also
summarized in Section 4.3.

The framework eventually results in a joint stochastic process. Section 4.4 shall for-
malize the process, and reveal some basic facts related to the process. We will show the
probabilistic dependencies between its marginal processes. In the next two Chapters, we
will make a detailed mathematical inspection on the process.

45



Ph. D Thesis Technical University of Clausthal

4.1 A unified representation of feasible solutions

Now, we start this Chapter by presenting a unified representation for feasible solutions.
This is a necessary pre-step for presenting a unified MBS framework, as we hope the
framework can cover essential features of different MBS algorithms. It may facilitate the
inspection of the revealed essential features in different algorithms.

As a convention, throughout this Chapter, we shall assume a minimizing CO instance
(S, f, 0) where S is the underlying feasible set, f is the objective function and the ob-
jective is to find out an optimal solution in S which minimizes f.

4.1.1 Representing feasible solutions as strings

Recall that in CE, we represent feasible solutions as fixed length strings over a finite
alphabet. Here, we shall again employ this representation in the framework. Namely,
we assume that

S ⊆ AL = A×A× · × A︸ ︷︷ ︸
L

= {(a1, . . . , aL) | ai ∈ A, for each i = 1, . . . , L},

where A is a finite set called alphabet, and L ∈ N is the fixed length of feasible solutions.
In the future, we shall refer to this presentation as ‘string representation’ or ‘string
encoding’.

Note that in CE, we also assume S = AL. However, we do not continue this. We
allow S 6= AL. And we call the underlying instance constrained if S 6= AL, otherwise we
call it unconstrained.

In Subsection 3.2.1, we have seen that MaxCut instances can be unconstrained string
encoded. As further examples, we now consider other problems in Section 2.2 bellow.

Example 4.1. Assume that the underlying CO instance is a TSP instance, see Sub-
section 2.2.1 in Chapter 2. And let G = (V,E) be the underlying graph. Recall that
each s ∈ S here is a walk on G which starts from a vertex, traverses all other vertices
exactly once and ends in the starting vertex, i.e. a Hamiltonian circle. To represent this
instance in the above fashion, there are generally two possible methods. The first one
is to identify the vertices V as the alphabet A and the |V | + 1 as the string length L,
then each feasible solution is represented as a string of length L = |V |+ 1 over vertices
(alphabet) A = V satisfying that the first position is identical with the last position,
and the positions in between can not be identical with any other position. Of cause, un-
der this representation, the underlying instance is constrained since S ( AL = V |V |+1.
The other one is to represent feasible solutions as binary strings of length n2 where
n = |V |. We can label the vertices as 0, 1, 2, . . . , n − 1. Then, the arcs are labeled as
(0, 1), (0, 2), . . . , (0, n − 1), · · · , (n − 1, 0), (n − 1, 1), . . . , (n − 1, n − 1). Given a feasible
tour (solution), we can represent it as a binary string that we set bij as 0 if arc (i, j) is
on the tour, otherwise we write bij = 1, for all arc (i, j). Under this case, the underly-
ing CO instance is also constrained string encoded with alphabet A = {0, 1} and length
L = n2.
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Example 4.2. Assume that the underlying CO instance is an AP (assignment problem)
instance, see Subsection 2.2.2 in Chapter 2. Now, a feasible solution is an assignment of
n jobs to m machines where n ≤ m. Let J be the collection of jobs, andM the collection
of machines. We label the jobs ∈ J as 1, . . . , n, and machines ∈ M as 1, . . . ,m. Then,
an assignment from J to M can be simply represented as a string of length L = n
over alphabet A = M such that each position i on string represents the label of the
corresponding machine to which the i-th job is assigned, for i = 1, . . . , n. Of cause,
under this representation, the underlying instance is constrained. And only those strings
with unrepeated alphabet are feasible.

Example 4.3. Assume that the underlying CO instance is a KP (knapsack problem)
instance, see Subsection 2.2.4 in Chapter 2. A feasible solution here is a set of items
which are needed to be packed in a knapsack. Let K be the finite collection of all possible
items. A feasible solution is a subset of K with total weight smaller than a specified
capacity of the knapsack. We label items in K as 1, . . . , |K|, and write bi = 1 if the i-th
item is packed in the knapsack and b0 = 0 if the i-th item is not packed. Then a feasible
solution can be written as a string of length L = |K| over alphabet A = {0, 1}. Under
this representation, the instance is also constrained. The feasible strings are those which
have a ‘legal’ total weight.

In fact, string representation is very popular in mathematical optimization. For ex-
ample, in linear programming (see [KV02] or Section A. 4 in the Appendix), feasible
solutions are generally represented as strings over reals. Actually, string representation
may apply to all CO instances. Let (S′, f ′, 0) be an arbitrarily fixed CO instance. We
can identify S′ as an alphabet. Then, each feasible solution can be seen as a string of
length 1 over the alphabet A = S′, although it may not be efficient.

For convenience, we now introduce some standard operations and terminologies of
strings which may be frequently used in the future. We use notation � to denote the
empty string over A. Let x = (x1, . . . , xm) and y = (y1, . . . , yn) be two strings. Then

• |x| = m represents the length of string x, particularly | � | = 0;

• we write x ⊆ y if string y extends string x, i,e, m ≤ n and

for all i = 1, . . . ,m, xi = yi,

with a convention that � is extended by an arbitrary string;

• we write a ∈ x for the case that item a is in string x i.e.

there exists i = 1, . . . ,m, a = xi;

• we write (a, b) ∈ x for the case that

there exists i = 1, . . . ,m− 1, a = xi and b = xi+1;

• for any l ≤ |x| = m, we write x|l for the leading string (x1, . . . , xl) with a convention
that x|0 = �;
• let a be an item , we use (x, a) to mean the concatenation of string x with item a,

i.e. (x, a) =
(
x1, . . . , xn, a

)
.
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4.1.2 Relation with other frequently used representations

As a unified representation for MBS algorithms, it is necessary for us to show that the
string encoding actually covers other frequently used representations. Recall that, other
used representations in MBS algorithms are binary strings (in EDA, see Section 3.4) and
construction graph (in ACO, see Section 3.3). Of cause, binary strings are a particular
case of the representation here. Thereby, we only need to discuss the case of construction
graph.

Recall that in ACO, a feasible solution is represented as a legal walk on a construction
graph which starts in a fixed vertex v0, traverses each of other vertices at most once, and
ends in a vertex without unvisited continuations (feasible continuations), see Subsection
3.3.2. Similar with Example 4.1, we may write a legal walk as a string of vertices
or arcs. However, when we represent legal walks as strings over vertices, the resulted
strings may be of different lengths since the underlying construction graph may not be
fully connected. Note that, whether the resulted strings here are of a same length is not
essential. We can fill the end of each string with copies of a virtual vertex so as to make
them of the same length.

Let G = (V,E) be a construction graph. We now introduce a symbol 4 /∈ V ∪ E to
the graph as a virtual vertex, and denote the resulted graph as G′ = (V ∪{4}, E). Note
that, a legal walk on G can contain at most |V | vertices. Thereby, the lengths of the
resulted strings are at most |V |. Let s = (s1, . . . , sn) be the string representation of an
arbitrary legal walk on G with n ≤ |V | and each si ∈ V . Then, s can be equivalently
extended as a string of length |V | + 1 over vertices on graph G′. Actually, we can add
|V | + 1 − n (or |V | − n) many copies of the virtual vertex 4 into the end of s so as to
extend it to be a string s′ of length |V |+ 1 over vertices on graph G′, i.e.

s′ = (s1, . . . , sn,4,4, . . . ,4︸ ︷︷ ︸
|V |+1−n

),

and then assign the same objective value to s′.
In ACO, the feasible solutions are limited to be legal walks on a graph. Of cause, it

is also possible that feasible solutions are other kinds of subgraphs. Typically, feasible
solutions may be trees, see e.g. the minimum spanning tree problem [KV02]. Here, a
tree means a subgraph which is connected but contains no circuit, see also A. 1 in the
Appendix. It can be uniquely determined by its arcs. Therefore, we can represent a
tree as a binary string by assigning value 1 to those arcs on the underlying graph which
belong to the tree, and 0 to the arcs which do not belong to the tree. In more detail,
we can first label the arcs E of the underlying graph G as 1, 2, . . . , |E|, then a tree can
be written as a string (b1, . . . , b|E|) of length |E| over {0,1} such that bi = 1 means the
i-th arc is on the tree, and bi = 0 means the i-th arc is not on tree for i = 1, . . . , |E|.

4.1.3 Introducing constraints under string encoding

In the above, we have shown that string encoding applies to all CO instances, and covers
other representations used in MBS algorithms. From Examples 4.1-4.3, we also see that

4.1. A UNIFIED REPRESENTATION OF FEASIBLE SOLUTIONS 48



Ph. D Thesis Technical University of Clausthal

the underlying CO instance may be constrained under this representation, i.e. S 6= AL
where S is the underlying feasible set, A is the alphabet and L is the length of the
(encoded) strings. To tell whether a string in AL is feasible in the constrained case, we
can introduce some constraints such that a string is feasible if and only if it satisfies (or
models) all the constraints.

As an example, we assume that the underlying instance is a TSP instance, and we
employ the vertices V as the alphabet A. By Example 4.1, we can represent each feasible
solution as a string of length |V | + 1 over A = V. Then, a string s = (s1, . . . , s|V |+1) ∈
V |V |+1 is feasible if and only if it holds that:

• s1 = s|V |+1;

• for all i, j = 1, . . . , |V |, i 6= j ⇒ si 6= sj .

The above two conditions are the introduced constraints.
Now, we use Ω to denote the collection of possible constraints for the underlying CO

instance under string encoding, and we set Ω = ∅ for the unconstrained case. For a
string s ∈ AL, we write s |= Ω to mean that s satisfies all the introduced constraints.
Here, we use a convention that s |= ∅ for every s ∈ AL. Then, the underlying feasible
set S can written as {s ∈ AL | s |= Ω}. And the corresponding optimization can be
formulated as

mins∈ALf
(
s
)

s.t. s |= Ω
(4.1)

where ‘s.t.’ shorts for ‘subject to’. Note that, (4.1) is actually a general form for CO,
since each CO instance can be string encoded.

It is very interesting that with string encoding, we can represent many CO instances
as a Linear Programming instance. For example, if we write feasible solutions in a TSP
instance as strings over vertices like in Example 4.1 and label the vertices by integers,
then resulted optimization in (4.1) shall become a linear (integer) program, namely,

mins=(s1,...,s|V |+1)∈V |V |+1f(s) =

|V |∑
i=1

w
(
si, si+1

)
s.t.

i) si − sj 6= 0 for all i, j = 1, . . . , |V | with j 6= i,

ii) s1 − s|V |+1 = 0,

where we label the vertices as V = {1, . . . , |V |}, and w
(
i, j
)

is the constant weight on
arc (i, j).
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4.2 A unified model family and feasibility construction

Recall that, MBS optimize models instead of solutions. Thereby, we still need to specify
a (unified) model family before presenting the framework. Here, a necessary criterion
for choosing a model family for the framework is that the ‘sampling’ in various practical
MBS algorithms can be formulated as special cases of the sampling by a model from the
specified family. Recall that the model families used in MBS algorithms are Pce in (3.2)
on p. 17, the pheromones matrices Paco in (3.15) on p. 30 and the univariate marginal
models Pum in Subsection 3.4.1. With the string representation, we shall again employ
Pce as the model family in the unified framework. However, here we shall not use the
sampling in CE, but define another sampling mechanism called feasibility construction
which is an extension of the visibility in ACO. Note that the feasibility construction is
not a new idea, it has been presented in our former work [WK14b] and [WK14a]. In this
Section, we shall see that feasibility construction indeed covers those sampling methods
in CE, ACO and EDA.

4.2.1 A review to the model family Pce
As formulated in Section 4.1, the underlying feasible set S ⊆ AL for some finite alphabet
A and an encoded solutions length L ∈ N. Recall that, a model Π ∈ Pce is a product
distribution (

Π(1), . . . ,Π(L)
)

=
(
Π(a; i)

)
a∈A;i=1,...,L

on the product space AL = A× · · · × A such that each

Π(i) =
(
Π(a; i)

)
a∈A

is a distribution on alphabet A. By Π ∈ Pce, a random string s = (a1, . . . , aL) in AL is
generated with each position ai chosen independently by Π(i) for i = 1, . . . , L, i.e. it is
chosen with a probability

Π(s) =
L∏
i=1

Π(ai; i).

In the unified framework, we shall employ Pce as the specified model family. But we do
not directly generate random solutions by models in Pce. On the one hand, this may
produce infeasible strings (here, S 6= AL may hold), although we have discussed in CE
that we can remove the constraints by introducing a penalty objective value. On the
other hand, the above random solution generating mechanism can not cover the sampling
in ACO. To cover the sampling in ACO, we shall use the sampling mechanism proposed
in our former works [WK14b] and [WK14a]. We shall call the mechanism as feasibility
construction. To show a difference in the sampling with CE, we shall employ the symbol
P to represent the model family Pce in the future.
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4.2.2 A unified sampling mechanism: feasible construction

To propose the feasibility construction, we need some auxiliary definitions. We say that
a string y ∈ A≤L = {�} ∪A∪A2 ∪ · · · ∪AL is a feasible partial solution if there exists a
feasible solution s ∈ S ⊆ AL with y ⊆ s (i.e. s extends y). For each i = 0, . . . , L, we use
Ri to denote the collection of all feasible partial solutions of length i. Obviously, R0 is
just the singleton {�} where recall that � is the empty string. And for each i = 1, . . . , L,
the collection Ri can be formally defined as

Ri =
{

(y, a)
∣∣y ∈ Ri−1, a ∈ A and ∃s ∈ S with (y, a) ⊆ s

}
(4.2)

where recall that (y, a) indicates the concatenation of partial solution y with item a. Of
cause, S = RL ⊆ AL, and R :=

⋃L
i=0Ri ⊆ A≤L is the collection of all possible partial

solutions.
For each i = 0, . . . , L − 1, we call a function Ci(·; ·) : Ri × A 7→ [0, 1] which satisfies

that for each y ∈ Ri
• Ci(y; ·) is a distribution on A, i.e.

∑
a∈ACi(y; a) = 1,

• for each a ∈ A, if (y, a) /∈ Ri+1, then Ci(y; a) = 0,

as a feasibility distribution for position i+ 1. If Ci(·; ·) is a feasibility distribution, we let
Ci(y) := {a ∈ A|Ci(y; a) > 0} denote the support of Ci(y; ·). Obviously, support Ci(y)
only contains feasible continuations of y, and Ci(y; ·) is a distribution concentrating on
those feasible continuations Ci(y).

Note that, for any CO instance we can define a sequence of feasibility distributions
{Ci(·; ·)}L−1

i=0 . For example, we may define a sequence of feasible distributions as

Ci(y; a) :=

{ 1
|{a∈A|(y,a)∈Ri+1}| for each a ∈ A with (y, a) ∈ Ri+1,

0 otherwise.
(4.3)

for i = 0, . . . , L− 1 and y ∈ Ri. In the future, we shall refer to (4.3) as the ‘non-greedy
feasibility distributions’.

We may also introduce some greedy insight into the feasibility distributions. As an
example, we consider a TSP instance with weight function w and n vertices in V . And
we assume here that feasible solutions (Hamiltonian circles) are represented as strings
over vertices. Then, each Ri contains strings with exactly i different vertices. For each
i = 0, . . . , L− 1 and y = (v1, . . . , vi) ∈ Ri, we can define a feasibility distribution as

Ci(y; v) :=


[
w
(
vi,v
)]−β

∑
(y,v)∈Ri+1

[
w
(
vi,v
)]−β if (y, v) ∈ Ri+1,

0 otherwise,

where β > 0 is a fixed constant, v ∈ V is an arbitrary vertex. Then, the support Ci(y)
shall collect the vertices which have not occurred in y yet. And the vertices ∈ Ci(y)
which introduce smaller traveling weights from the end of y (i.e. vi) would be more
preferred as a continuation of y.
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Now, we are ready to introduce the feasibility construction method. Feasibility con-
struction is a method inspired by the visibility concept for ACO, see (3.14). It produces
a random solution stepwise by a mixture of a production distribution in P (i.e. Pce)
and the feasibility distributions. Let Π ∈ P be a product distribution on AL, and
{Ci(·; ·)}L−1

i=0 a constructed sequence of feasibility distributions. Starting with the empty
string �, a partial solution y is then extended by a feasible continuation a ∈ Ci(y) with
a selection probability defined as

Q(a; y, i+ 1,Π) :=
Π(a; i+ 1)Ci(y; a)∑

a′∈Ci(y) Π(a′; i+ 1)Ci(y; a′)
, (4.4)

where a convention 0
0 = 0 is employed. With (4.4), the selection probability of a complete

solution s = (s1, . . . , sL) ∈ S would be

Q
(
(s1, . . . , sL); Π

)
:=

L−1∏
i=0

Q
(
si+1; s|i, i+ 1,Π

)
, (4.5)

where recall that s|i = (s1, . . . , si) and s|0 = �. Obviously, the support of (4.5) is a subset
of S. In other word, by (4.5), we will always produce feasible solutions. As a summary,
a pseudo random solution generation algorithm with feasibility construction is listed in
Figure 4.1 below.

Algorithm Random solution generation by feasibility construction

a) set y = �, and i = 0;

b) for i < L do;

b 1) select an item from A with probability

Q(a; y, i+ 1,Π) :=
Π(a; i+ 1)Ci(y; a)∑

a′∈Ci(y) Π(a′; i+ 1)Ci(y; a′)
.

b 2) y = (y, a);

b 3) i = i+ 1;

c) output y;

Figure 4.1: Random solution generation by feasibility construction

Note that, feasibility construction also covers the unconstrained case where S = AL.
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In this case, we can set

Ci(y; a) =
1

|A| for each i = 0, . . . , L− 1 and y ∈ Ri. (4.6)

Then the Q(a; y, i+ 1,Π) defined in (4.4) is degenerated to Π(a; i+ 1). Obviously, this
will result in a sampling as in CE and EDA. Note also that, in non-greedy feasibility
construction (see (4.3)), we take Ci(y; ·) as the uniform distribution on set {a ∈ A|(y, a) ∈
Ri+1}, and then

Q(a; i+ 1, y,Π) = Q′(a; i+ 1, y,Π) :=

{
Π(a;i+1)∑

a′∈A,(y,a′)∈Ri+1
Π(a′;i+1) if (y, a) ∈ Ri+1

0 otherwise.
(4.7)

4.2.3 Cover the sampling of ACO

Recall that, in ACO, feasible solutions are represented as legal walks on a construction
graph, i.e. those walks starting from a unique vertex, traversing other vertices at most
once until no feasible continuations available. Here, we assume a construction graph
G = (V,E) with V = {v0, v1, . . . , vK}, v0 is the unique starting vertex for all legal walks.
A legal walk on G can be represented as a string over vertices V, or a string over arcs
E, and these two representations are equivalent. More details, let

v0, (v0, a1), a1, (a1, a2), . . . , (an−1, an), an

be a legal walk on G, it can be equivalently represented as a string (v0, a1, . . . , an) over
vertices and a string

(
(v0, a1), (a1, a2), . . . , (an−1, an)

)
over arcs E. Due to equivalence

of these three representations, we may use them interchangeably. We will see that the
essential samplings in ACO can be formulated as a particular case of the feasibility
construction if we write legal walks as strings over arcs.

In ACO, we generate a legal walk by iteratively extending a partial legal with a feasible
continuation. Here, a partial legal walk is a walk starting from the unique starting vertex
v0, and traversing other vertices at most once. Let y = (v0, a1, . . . , am) be a partial legal
walk (here, we write walks as strings over vertices). We use VFeasible(y) to denote the
collection of all feasible continuations to y. Then

VFeasible(y) =
{
a ∈ V | (am, a) ∈ E, a /∈ {v0, a1, . . . , am}

}
.

When VFeasible(y) = ∅, y is a (complete) legal walk. Assume VFeasible(y) 6= ∅, Γ =(
τ(c, d)

)
c,d∈V is the present pheromones matrix. Then, an ant may select a feasible

continuation a ∈ VFeasible(y) to y by the choice probability

P
[
a | y

]
=

{
τ(am,a)∑

v′∈VFeasible(y)
τ(am,v′)

if a ∈ VFeasible(y),

0 otherwise.
(4.8)
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Moreover, if there is a visibility information η(y; ·) available, the choice probability may
become

P
[
a | y

]
=


[
τ(am,a)

]α[
η(y;a)

]β
∑
v′∈VFeasible(y)

[
τ(am,v′)

]α[
η(y;v′)

]β if a ∈ VFeasible(y),

0 otherwise,

(4.9)

where η(y; v) is typically some greedy information like the distance information e.g.
η(y; v) = 1/d(am, v) in TSP, and α, β > 0 are constants. In application, α is typically
chosen to be 1.0, see [DS04], [DMC96], [DG97a], [DG97b], [SH00] etc. Therefore, (4.9)
is generally

P
[
a | y

]
=


τ(am,a)

[
η(y;a)

]β
∑
v′∈VFeasible(y)

τ(am,v′)
[
η(y;v′)

]β if a ∈ VFeasible(y),

0 otherwise,

(4.10)

in practice.
To show that the feasibility construction covers (4.8) and (4.10), we represent legal

walks as equal-length strings over arcs. We use E ∪ {4} as the underlying alphabet A,
where 4 is a symbol not in E. We fill the end of each legal walk with copies of 4 so
as to make them of length L = |V | − 1. Note that, each legal walk on the construction
graph G can contain at most |V | − 1 arcs. According to the pheromones matrix, we can
define a product distribution

Π =
(
Π(a, b); i

)
(a,b)∈A;i=1,...,L

=
(
Π(a, b); i

)
(a,b)∈E∪{4};i=1,...,|V |−1

as, for i = 1, . . . , L = |V | − 1, and (a, b) ∈ A = E ∪ {4},

Π
(
(a, b); i

)
=

{
p·τ(a,b)∑

(c,d)∈E τ(c,d) if (a, b) ∈ E,
1− p if (a, b) = 4,

(4.11)

where p ∈ (0, 1) is an arbitrarily fixed constant. Obviously, Π
(
(a, b); 1

)
= · · · =

Π
(
(a, b);L

)
for each item (arc) (a, b) ∈ A. Each Π

(
·; i
)

indicates a selection in A =
E ∪ {4} for the i-th position on a random string.

Corresponding to the non-visibility choice probability (4.8), we can construct non-
greedy feasibility distributions {Ci(·; ·)}i=0,...,L−1 as following

• for each arc (a, b) ∈ A = E ∪ {4}, C0

(
�; (a, b)

)
= 0 if a 6= v0, and

C0

(
�; (a, b)

)
=

1

|{b ∈ V | (v0, b) ∈ E}|
if a = v0,

• for each legal partial walk Y =
(
(v0, a1), . . . , (am−1, am)

)
(here, we represent walks

as strings over arcs), let

EFeasible(Y ) =
{

(a, b) ∈ E ∪ {4} | a = am, b ∈ V, b /∈ {v0, a1, . . . , am}
}
,
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and we define, for all (a, b) ∈ A = E ∪ {4},

Cm
(
Y ; (a, b)

)
=


1 if EFeasible(Y ) = ∅, (a, b) = 4,
0 if EFeasible(Y ) = ∅, (a, b) 6= 4,

1
|EFeasible(Y )| if EFeasible(Y ) 6= ∅, (a, b) ∈ EFeasible(Y ),

0 otherwise.

(4.12)

Then, by the non-greedy feasibility construction (4.7), the probability for choosing an
arc (a, b) ∈ A as the continuation to a legal partial walk Y =

(
(v0, a1), . . . , (am−1, am)

)
is

Q
(
(a, b);Y,m+ 1,Π

)
=

Π
(
(a, b);m+ 1

)
Cm
(
Y ; (a, b)

)∑
(c,d)∈AΠ

(
(c, d);m+ 1

)
Cm
(
Y ; (c, d)

) ,
where we again use the convention 0

0 = 1. In the case that VFeasible(y) 6= ∅, EFeasible(Y )
is also non empty and equals {(am, b) | b ∈ VFeasible(y)}, where y = (v0, a1, . . . , am) is
the vertices representation of Y. According to the third and fourth cases in (4.12), the
probability

Q
(
(am, a);Y,m+ 1,Π

)
=

Π
(
(am, a);m+ 1

)
Cm
(
Y ; (am, a)

)∑
c∈VFeasible(y) Π

(
(am, c);m+ 1

)
Cm
(
Y ; (am, c)

)
=

Π
(
(am, a);m+ 1

)
1

|EFeasible(Y )|∑
c∈VFeasible(y) Π

(
(am, c);m+ 1

)
1

|EFeasible(Y )|

=
Π
(
(am, a);m+ 1

)∑
c∈VFeasible(y) Π

(
(am, c);m+ 1

) ,
for a vertex a ∈ VFeasibility(y). By the first case in (4.11), we have

Q
(
(am, a);Y,m+ 1,Π

)
=

p·τ(am,a)∑
(h,d)∈E τ(h,d)∑

c∈VFeasible(y)
p·τ(am,c)∑

(h,d)∈E τ(h,d)

=
τ(am, a)∑

c∈VFeasible(y) τ(am, c)
,

which is exactly the same as the first case in the choice probability (4.8) for non-
visibility. When a /∈ VFeasibility(y), we can similarly show that the probability is 0.
And if VFeasibility(y) = ∅ i.e. y is a complete legal walk, then EFeasibility(Y ) is also empty.
In this case, the probability for choosing 4 is 1 provided that Y contains less than L
arcs. So, we deterministically add copies of 4 to the end of a ‘complete’ Y until it
contains L arcs.

For covering the visibility case (4.10), we only need to redefine C0

(
�; (v0, a)

)
as[

η((v0); a)
]β∑

c∈VFeasibility(y)

[
η((v0); c)

]β
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where (v0) means the string only consisting of v0, and the feasibility distributions (4.12)
as

Cm
(
Y ; (a, b)

)
=



1 if EFeasible(Y ) = ∅, (a, b) = 4,
0 if EFeasible(Y ) = ∅, (a, b) 6= 4,[

η(y;b)
]β

∑
c∈VFeasibility(y)

[
η(y;c)

]β if EFeasible(Y ) 6= ∅, (a, b) ∈ EFeasible(Y ),

0 otherwise,

where Y =
(
(v0, a1), . . . , (am−1, am)

)
, y = (v0, v1, . . . , vm) is its vertices representation.

The verification is similar as in the case of non-visibility.

4.2.4 Probabilistic dependencies in the sampling

In the above discussion, we have seen that feasibility construction covers the samplings
used in CE, ACO and EDA. Therefore, by feasibility construction, it is ‘legal’ to use
P = Pce as the model family in the unified framework. Actually, feasibility construction
may also introduce some ‘crude’ probabilistic dependencies into the sampling.

Recall that, if we generate a random solution s = (a1, . . . , aL) only by a model Π =(
Π(a; i)

)
a∈A;i=1,...,L

∈ P, then positions on s are generated independently i.e.

P
[
ai
∣∣ (a1, . . . , ai−1)

]
= P

[
ai
]

= Π(ai; i)

for each i = 1, . . . , L, where we use a convention that (a1, a0) = �. In feasibility con-
struction, the next item may depend on the finished leading string, i.e.

P
[
ai
∣∣ (a1, . . . , ai−1)

]
= Q

(
ai; (a1, . . . , ai−1), i,Π

)
6= P[ai]

in the constrained case.
Actually, feasibility construction can be made more extensive so as to cover some

linkage learning mechanism [PM98] into the sampling. However, we will not discuss this
issue here, we leave it as a future work.
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4.3 A unified model-based search framework

In Sections 4.1 and 4.2, we have fixed the string representation as the unified represen-
tation and P = Pce as the unified model family. Now, we are ready to present the unified
framework. Here, we emphasize once more that the underlying CO instance is (S, f, 0)
with S = AL for some alphabet A and a fixed solutions length L ∈ N, the model family
is P = Pce, and the feasibility construction is employed in the sampling i.e we sample
random solutions with algorithm in Figure 4.1.

4.3.1 The unified framework for model-based search

The picture below visually describes the unified MBS framework we are going to present.

distribution

sample

distribution

distribution
memory

feasibility

memorysamplefeasibility

iteration

iteration

In the above picture, Πt and C represent the model in iteration t and the constructed
feasibility distributions respectively. The Xt is a random sample produced by feasibility
construction (4.5).

The Mt in the picture is called memory which records some solutions sampled before
the present iteration t with a convention that M0 = ∅. Typically, Mt may contain some
best solutions, e.g. the best so far solution as in ACS andMMAS. After Xt is sampled,
the next memory Mt+1 is constructed with a specified memory update rule. Note that
some MBS algorithms may not use memories, e.g. CE. In this case, we always identify
the memory as ∅.

The Wt is the empirical distribution learned from Xt ∪Mt.
1 Generally, we may learn

Wt from a subsample N b
t of Xt ∪Mt with a specified learning rule. And a rule for

selecting N b
t is called a selection rule. Note that, the selection is usually biased to good

solutions. For instance, in CE, we learn the empirical distribution from a subsample N b
t

which consists of elite solutions in Xt, i.e. a truncate selection rule is employed.
The next model Πt+1 is constructed from current model Πt and the learned empirical

distribution Wt with a specified distribution update rule. In MBS, we often construct
Πt+1 as

Πt+1 = (1− ρt+1)Πt + ρt+1Wt, (4.13)

1In this Thesis, we identify samples and memories as vectors or strings of solutions. And the notation
Xt ∪Mt is equivalent to

(
Xt,Mt

)
which means the concatenation of Xt and Mt.
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where ρt+1 is a learning rate. Obviously, learning rates correspond to the smooth
parameters in CE and the evaporation rates in ACO. In the sequel, we shall concentrate
on this kind of update, and we shall refer to (4.13) as the ‘basic recursion’. In update
(4.13), the learning rate ρt+1 reflects the relative importance of the empirical distribution
Wt.

Now, we list the unified framework for MBS algorithms in Figure 4.2 below. Obviously,
this framework covers the essential features of CE, ACO and EDAs. Note that, this
framework itself is an optimization algorithm with four components, namely memory
update rule, selection rule, learning rule and possibly the distribution update rule. Later,
we shall summarize the used rules in the practical MBS algorithms. The mathematical
study in Chapters 5 and 6 shall be based on this framework.

Algorithm A unified model-based search framework

Elements:
an instance (S, f) with S ⊆ AL for some finite set A and L ∈ N, a
sample size N ∈ N, a sequence of learning rates (ρt)t≥1 on (0, 1], an initial
distribution Π0 ∈ P, a sequence of feasibility distributions Ci(·; ·) for
i = 0, . . . , L − 1, a memory update rule, a subsample selection rule, a
learning rule, and a stop criterion STOP.

algorithm:

a) set M0 = ∅ and t = 0;

b) do while STOP does not hold;

b 1) draw a sample Xt using algorithm in Figure 4.1 on p. 52 with
Π = Πt and Ci(·; ·)’s;

b 2) construct Mt+1 from Mt and Xt with the memory update rule;

b 3) select a subsampleN b
t from Mt∪Xt with the subsample selection

rule;

b 4) learn a distribution Wt ∈ P from N b
t with the learning rule;

b 5) Πt+1 = (1− ρt+1)Πt + ρt+1Wt;

Figure 4.2: A unified model-based search framework for combinatorial optimization
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4.3.2 A summary of commonly-used rules in practical model-based search
algorithms

From Sections 4.1 and 4.2, we see that the sampling method in the framework covers
the sampling methods in practical MBS algorithms. For covering the essential features
of those practical algorithms, we now summarize the commonly used rules for the four
components from the practical MBS algorithms in Chapter 3.

Memory update rules

Memory update rule tells which solutions should be stored for a possible use in next
round. By a memory update rule, we can construct the next memory Mt+1 from the
present memory Mt and sample Xt. Usually, this rule may affect the empirical distri-
bution in next round, because Wt is learning from Mt ∪Xt. In general, there are three
kinds of memory update rules. Here, we call them non memory (NM), globally truncate
memory update (GTMU) and locally truncate memory update (LTMU) respectively.

In NM, Mt ≡ ∅ for all t ∈ N, i.e we do not store the feasible solutions seen previ-
ously. Typical examples of MBS algorithms with NM, are the basic CE (cross entropy
algorithm, see [Rub99]), CE/tdsp (cross entropy algorithm with time-dependent smooth
parameters, see [CJK07]), CE/as (ant-like cross entropy algorithm, see [WK14b]), AS
(ant system, see [DMC96]), cGA (compact genetic algorithm, see [HLG99]), UMDA
(univariate marginal distribution algorithm, see [PM98]), and PBIL (population-based
incremental learning, see [Bal94]).

In GTMU, the next memory Mt+1 consists of some best solutions in Mt and Xt. In
details, we order solutions in Mt ∪Xt as

f(s(n1)) ≤ f(s(n2)) ≤ . . . ≤ f(s(nM+N ))

where N is the size of Xt and M is the size of Mt, and then set

Mt+1 = (s(n1), . . . , s(nM )). (4.14)

MBS algorithms with GTMU are e.g. ACS (ant colony system, see [DG97b]), GBAS
(graph-based ant system, see [Gut00]), and GBCE (graph-based cross entropy algorithm,
see [Mar05]) and UMDA.

In LTMU, a fixed out rule is employed to remove a number of solutions from Mt, then
Mt+1 shall consist of the same number of best solutions in Xt as well as the remaining
solutions in Mt. In details, let O = (x(1), . . . , x(k)) ⊆Mt be k solutions determined by
an out rule, and I = (y(1), . . . , y(k)) the k best solutions in Xt. Then

Mt+1 =
[
Mt −O

]
∪ I.2 (4.15)

Note that, we may keep the out rule disabled in the first several iterations until the
memory has reached a specified size. Typical examples of out rules are worst out (WO)
and first in first out (FIFO). In WO, we kick out a fix amount of worst solutions. In
FIFO, we kick out a number of oldest solutions. A type example of LTMU is PBAS
(population-based ant system [GM02]).

2Here Mt −O is the string which is formed by removing O from Mt.
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4.3.3 Selection rules

In MBS, the empirical distribution Wt is typically learned from a subsample N b
t of

Xt ∪Mt. A selection rule may tell how to select N b
t in each iteration t. This rule may

directly affect the empirical model Wt. In practice, selection rules can be collected
as identity selection (ID), memory identical selection (MID), truncate selection (TS),
random selection (RS) and memory random selection (MRS).

In ID selection, we set N b
t = Mt ∪Xt. MBS algorithms with ID selection are e.g. AS

(ant system, see [DMC96]) and cGA (compact genetic algorithm, see [HLG99]).
In MID selection, we set N b

t = Mt+1. Note that, Mt+1 is also a subsample of Mt∪Xt.
Typical algorithms with MID selection are e.g. ACS (ant colony system, [DG97b]),
PBAS (population-based ant system, [GM02]), GBAS (graph-based ant system, [Gut00])
and GBCE (graph-based cross entropy, [Mar05]).

TS selection is completely similar with the GTMU memory update. It collects a
fixed number of best solutions in Mt ∪Xt as N b

t . MBS algorithms with TS selection are
e.g. CE (cross entropy algorithm, [RK04]), CE/tdsp (cross entropy with time-dependent
smooth parameters, see [CJK07]), CE/as (ant-like cross entropy algorithm, [WK14b]),
UMDA (univariate marginal distribution algorithm, [MP96]) and PBIL (population-base
incremental learning, [Bal94]).

In the case of RS, we select N b
t from Xt∪Mt by probabilities proportional to qualities

of solutions, i.e.

P
[
s ∈ N b

t

∣∣ s ∈Mt ∪Xt

]
=

g(f(s))∑
s′∈Mt∪Xt

g(f(s′))
for all s ∈Mt ∪Xt, (4.16)

where g(·) is a fixed positive non-increasing function. Examples of RS selection can be
found in UMDA and some other EDAs (see Hauschild et al[HP11]).

MRS selection is similar with RS selection. However, here N b
t is sampled from Mt+1

i.e.

P
[
s ∈ N b

t

∣∣ s ∈Mt ∪Xt

]
=

g(f(s))∑
s′∈Mt+1

g(f(s′))
for all s ∈Mt+1, (4.17)

where g(·) is a fixed positive non-increasing function. Algorithm with MRS is e,g,
MMAS [SH00]

4.3.4 The learning rules

Given N b
t , an empirical model Wt ∈ P = Pce shall be learned by a learning rule. In

MBS algorithms, popular learning rules are uniform learning (UL) and weighted learning
(WL).

Typical examples of UL may be CE [Rub99], UMDA [MP96] and PBIL [Bal94]. With
UL, we see the solutions in N b

t equivalently, and use the relative frequencies as the
empirical distribution Wt, i.e.

Wt(a; i) :=

∑
s∈N bt

1{a}(si)

|N b
t |

for all a ∈ A and i = 1, . . . , L. (4.18)
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By WL, we see the solutions inequivalently, and use the weighted frequencies as Wt.
Let g(·) be a positive real function satisfying g(s(1)) ≥ g(s(2)) ⇐⇒ f(s(1)) ≤ f(s(2)).
Then, we may calculate the empirical distribution as

Wt(a; i) :=

∑
s∈N bt

1{a}(si)g(s)∑
s∈N bt

g(s)
for all a ∈ A and i = 1, . . . , L. (4.19)

Algorithms with WL are various kinds of ACO algorithms (see [DS04]).
Of cause, we may make the learning phase more flexible, i.e.

Wt(a; i) :=

∑
s∈N bt

1{a}(si)g(s, t)∑
s∈N bt

g(s, t)
for all a ∈ A and i = 1, . . . , L, (4.20)

for some fixed positive function g with g(s(1), t) ≥ g(s(2), t) ⇐⇒ f(s(1)) ≤ f(s(2))
for t ∈ N. We shall refer to this kind of learning as time dependent weighted learning
(TDWL) in the sequel.

4.3.5 Distribution update rules

With the present model Πt and the empirical model Wt, we can construct the model
Πt+1 for next round according to a fixed distribution update rule. MBS algorithms
generally employ the basic recursion (4.13) to form next model. According to the range
of (ρt)t≥1, we can collect MBS into two classes, namely, conservative and radical.

Conservative distribution update is popular in MBS. It restricts each learning rate in
(0, 1). For examples, see CE [RK04], ACO [DS04] and EDAs using univariate marginal
distributions [HP11] except for UMDA (univariate marginal distribution algorithm,
[PM98]).

Radical distribution update occurs only in the UMDA [PM98]. It directly uses the
empirical distribution Wt as the next model Mt+1, in other word ρt ≡ 1.

Actually, we can make the update of distributions in the framework more extensively
by formulating it as a (possibly random) function U : P× P 7→ P. And if a definition of
U is given, we can set the next model Πt+1 as U(Πt,Wt). In MBS, the basic recursion
(4.13) is the most popular definition for U . Of cause, we can employ other definitions.
For example, in PBIL (population-based incremental learning), we can define the U as
a composition of the basic recursion and the additional model mutation function.

Although we can make the update of models more extensive, we will still stick to
(4.13) in the future, because of its popularity.

As a summary to this Section, Table 4.1 on p. 62 shows the used rules in practical
MBS algorithms.
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Table 4.1: The four rules for some practical MBS algorithms

algorithms memory update selection rule learning rule distr. update

CE [Rub99] NM TS UL ρt ≡ ρ ∈ (0, 1)
CE/as [WK14b] NM TS UL ρt ∈ (0, 1)
GBCE [Mar05] GTMU MID UL ρt ∈ (0, 1)

CE/tdsp [CJK07] NM TS UL ρt ∈ (0, 1)
AS NM ID WL ρt ≡ ρ = 1

ACS GTMU MID WL ρt ≡ ρ ∈ (0, 1)
MMAS LTMU (WO) MRS WL ρt ≡ ρ ∈ (0, 1)

PBAS [GM02] LTMU (FIFO) MID WL ρt ≡ ρ = 1
GBAS [Gut00] GTMU MID WL ρt ≡ ρ ∈ (0, 1)
1-ANT [NW06] GTMU ID WL ρt ≡ ρ ∈ (0, 1)
ASelite[BHS97] GTMU ID WL ρt ≡ ρ ∈ (0, 1)
ASrank[BHS97] GTMU ID WL ρt ≡ ρ ∈ (0, 1)

ASbw[CdVHM00] GTMU ID WL ρt ≡ ρ ∈ (0, 1)
UMDA NM or GTMU TS or RS UL ρt ≡ ρ = 1
PBIL NM TS UL ρt ≡ ρ ∈ (0, 1)
cGA NM ID UL ρt ≡ ρ ∈ (0, 1)

EDAs [ZM04] NM TS or RS UL ρt ≡ ρ = 1
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4.4 The underlying stochastic process

In Section 4.3, we have presented the unified framework for MBS algorithms based on
the string representation. The framework specifies P = Pce as model family, and employs
the feasibility construction in sampling. It iteratively evolves models in P according to
four rules i.e. a memory update rule, a selection rule, a learning rule and a distribution
update rule. Due to this evolution, it eventually results in a joint stochastic process. As
an end to this Chapter, this Section shall formally define the process.

4.4.1 Input parameters and strategy

The framework generally takes the following as input parameters (see also Figure 4.2):

• a fixed initial model Π0 ∈ P;

• a fixed feasibility distributions sequence {Ci(·; ·)}L−1
i=0 ;

• a fixed learning rates sequence (ρt)t=1,2,... with each ρt ∈ (0, 1];

• a fixed sample size N ∈ N;

• a fixed memory size M ∈ N;

• a fixed subsample size Nb ∈ N;

• a fixed memory update rule M;

• a fixed subsample selection rule S;

• a fixed learning rule L.
Note that, we restrict the memory update rule to be the basic recursion

Πt+1 = (1− ρt+1)Πt + ρt+1Wt.

Note also that, the learning rate ρt is required to be positive. The main reason is that
practical MBS algorithms generally employ positive learning rates, see Table 4.1.

A strategy of the framework is then a combination of a fixed feasibility distributions
sequence, a fixed learning rates sequence, a fixed memory update rule, a fixed subsample
selection rule and a fixed learning rule. With a specified strategy, the framework may
correspond to a particular MBS algorithm. For example, if we use the unconstrained
feasibility distributions (4.6), fix a constant learning rate ρt ≡ ρ > 0, and employ resp.,
rules NM (non memory), TS (truncate selection) and UL (uniform learning) for memory
update, subsample selection and learning, the framework then becomes a CE algorithm
(see Table 4.1). In the sequel, we use notation “M =” to short for the words “memory
update rule is”, similarly for the notation “S =” and “L =”. As an example, “M =
NM”, “S = TS” and “L = UL” correspond resp., to the sentences “memory update rule
is non-memory”, “subsample selection rule is truncate selection” and “learning rule is
uniform learning”.

4.4.2 The underlying stochastic process

With a fixed strategy, the framework will iteratively evolve models ∈ P = Pce. This
would result in a joint stochastic process (see A. 4 in the Appendix for a definition of
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stochastic process) (
Πt; Xt; Mt;N b

t ; Wt

)
t=0,1,2,...

.

Where Πt ∈ P represents the model in iteration t which is a product distribution on the
product space AL = A×· · ·×A; Xt ∈ SN is a random sample drawn by a mixture of Πt

and the feasibility distributions {Ci}L−1
i=0 with probabilities defined in (4.5); Mt ∈ SM

is the memory maintained by a fixed rule M, which records some ‘best’ solutions seen
in times 0, 1, 2, . . . , t − 1; N b

t ∈ SNb is a subsample of Xt ∪Mt selected by a fixed rule
S; Wt ∈ P is an ‘empirical’ distribution learned from N b

t by a fixed rule L. Initially, a
starting model ∈ P is determined i.e. Π0 is fixed, and the memory is set to be an empty
vector i.e. M0 = ∅. Then, the process iteratively evolves models as in Figure 4.3 below.
The thin dashed (gray) line indicates the subsample selection in the case that S = MID

Πt Xt
sampling

Mt

time t− 1 Ntselect S

select S

Wt
learn L Πt+1

(1− ρt+1)

ρt+1

Mt+1 time t+ 1

S = MID, MRS

update M

update M

Figure 4.3: Underlying process

or MRS (memory identity selection or memory random selection), and the thin (gray)
line for other cases.

In the above Figure, Πt = (Πt(1), . . . ,Πt(L)) is the model for iteration t, where each

Πt(i) =
(
Πt(a; i)

)
a∈A

describes a distribution on the fixed alphabet A i.e.

∑
a∈A

Π(a; i) = 1 and Π(a; i) ≥ 0 for each a ∈ A

for i = 1, . . . , L. The state space P = Pce of the marginal process
(
Πt

)
t=0,1,2,

is contin-

uous, since the state space P(A) of the process
(
Πt(i)

)
t=0,1,2,...

is continuous for each
i = 1, . . . , L.

By the feasibility construction (4.5), we can draw a random sample

Xt =
(
X

(1)
t , . . . ,X

(N)
t

)
where each

X
(l)
t =

(
X

(l)
t (1), . . . ,X

(l)
t (L)

)
∈ S ⊆ AL
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for l = 1, . . . , N, by Πt and feasibility distributions. In details, for each l = 1, . . . , N

and each i = 0, . . . , L− 1, X
(l)
t (i+ 1) is sampled by a conditional probability

Q
(
X

(l)
t (i+1); X

(l)
t (1, . . . , i), i+1,Πt

)
=

Πt

(
X

(l)
t (i+ 1); i+ 1

)
Ci
(
Xt(1, . . . , i); X

(l)
t (i+ 1)

)∑
a∈Ci

(
X

(l)
t (1,...,i)

)Πt

(
a; i+ 1

)
Ci
(
Xt(1, . . . , i); a

)
where X

(l)
t (1, . . . , i) = X

(l)
t |i =

(
X

(l)
t (1), . . . ,X

(l)
t (i)

)
is the leading partial solution up to

length i in X
(l)
t , and we use the convention that X

(l)
t |0 = �. Therefore, for each x ∈ SN ,

P
[
Xt = x

∣∣ Πt,Ht−1

]
= P

[
Xt = x

∣∣ Πt

]
,

for each t ≥ 0, where Ht−1 is the history of the joint process up to time t− 1 i.e.

Ht−1 =
{
Π0,X0,M0,N b

0 ,W0; · · · ; Πt−1,Xt−1,Mt−1,N b
t−1,Wt−1

}
,

and we use a convention thatH−1 = ∅. Obviously, the state space AL of marginal process(
Xt

)
t=0,1,2...

is SN which is finite.

The state space of the marginal process
(
Mt

)
t=0,1,2,...

is SM ∪{∅} which is also finite.

Initially, M0 = ∅. Then, the memory Mt ∈ SM is a vector containing M solutions for
each iteration t ≥ 1. In each iteration t ∈ N, the memory shall be updated by the fixed
memory rule M. By the rule, the next memory Mt+1 is then a subsample of Xt ∪Mt.
For example, if M = GTMU (global truncate memory update rule), we shall take the
best M solutions in present sample Xt and present memory Mt as the next memory
Mt+1. Obviously, for each m ∈ SM ,

P
[
Mt+1 = m

∣∣ Xt,Πt,Mt,N b
t ,Wt,Ht−1

]
= P

[
Mt+1 = m

∣∣ Xt,Mt

]
,

for each t ∈ N.
The marginal process

(
N b
t

)
t=0,1,2,...

also has a finite state space i.e. SNb . Each N b
t is

a subsample of Xt ∪Mt chosen by the fixed selection rule S. When S = MID (memory
identity selection) or S = MRS (memory random selection), it is a subsample of next
memory Mt+1, thereby depends the next memory Mt+1, see thin dashed (gray) line in
Figure 4.3. But when S = TS (truncate selection), RS (random selection) or ID (identity
selection), it is a direct subsample of Xt ∪Mt, therefore does not depend on Mt+1, see
thin (gray) line in Figure 4.3. Consequently, for each n ∈ SNb ,

P
[
N b
t = n

∣∣ Xt,Πt,Mt,Mt+1,Ht−1

]
= P

[
N b
t = n

∣∣ Xt,Mt

]
holds for cases S = ID, TS, or RS, but does not hold for cases S = MID or MRS.

Similar to
(
Πt

)
t=0,1,2,...

, the state space of marginal process
(
Wt

)
t=0,1,2,...

is also the

continuous space P = Pce. In each iteration t ∈ N, after the subsample N b
t is selected,

we shall learn an empirical model Wt from N b
t by the fixed learning rule L. Like Πt,

each Wt = (Wt(1), . . . ,Wt(L)) with Wt(i) =
(
Wt(a; i)

)
a∈A

. When L = UL (uniform
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learning), each Wt(a; i) is set to be the relative frequency of item a at the i-th position
of the subsample N b

t , see (4.18). And when L = WL (weighted learning), Wt(a; i) will
be the weighted frequency of item a at the i-th position of N b

t , see (4.19). Obviously,
N b
t dominates Wt, and for each w ∈ P,

P
[
Wt = w

∣∣ Xt,Πt,Mt,N b
t ,Ht−1

]
= P

[
Wt = w

∣∣ N b
t

]
,

for each t ∈ N.
After Wt is learned, the next model Πt+1 is set to be a convex combination of the

present mode Πt and Wt as in the basic recursion (4.13). In details,

Πt+1(a; i) = (1− ρt+1)Πt(a; i) + ρt+1Wt(a; i) (4.21)

for all i = 1, . . . , L and a ∈ A. Hence, for each p ∈ P,

P
[
Πt+1 = p

∣∣ Xt,Πt,Mt,N b
t ,Wt,Ht−1

]
= P

[
Πt+1 = p

∣∣ Πt,Wt

]
=

{
1 if (4.21) holds,
0 otherwise,

for t ∈ N.
The joint process actually forms a Markov chain. By the above discussion, it is not

difficult to see that

P
[(

Πt; Xt; Mt;N b
t ; Wt

)
= (p; x; m; n; w)

∣∣∣ Ht−1

]
(4.22)

= P
[(

Πt; Xt; Mt;N b
t ; Wt

)
= (p; x; m; n; w)

∣∣∣ (Πt−1; Mt−1

)]
,

for p ∈ P, x ∈ SN , m ∈ SM , n ∈ SNb and w ∈ P are constants. In the future, we shall
refer to (4.22) as ‘Markov property’.

In the next two Chapters, we shall give a more detailed analysis on the joint process.
We will see that the basic recursion (4.21), Markov property (4.22), memory update rule
M and subsample selection rule S take pivotal roles in the analysis.
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5 Analysis of model-based search I:
reachability and a crude runtime analysis

In Chapter 4, we proposed a unified framework for MBS algorithms, see Figure 4.2.
The framework covers the essential features of these MBS algorithms used in practice,
i.e. each MBS algorithm may correspond to the framework equipped with a particular
strategy where a strategy for the framework is a combination of a sequence of feasibility
distributions, a memory update rule, a subsample selection rule, a learning rule and
possibly a distribution update rule. With a fixed strategy, the framework finally results
in a joint Markov chain

(
Πt; Xt; Mt;N b

t ; Wt

)
t=0,1,2,...

, see Section 4.4. From now on, we
shall concentrate on this Markov chain. We will show a detailed mathematical analysis
for its asymptotic properties. The results shall carry over to these algorithms which are
covered in the framework.

We will focus on four issues in the analysis: conditions for guaranteeing to reach an
optimal solution in finitely many iterations (finite reachability); conditions for reaching
an optimal solution in a polynomial runtime (runtime analysis); convergence property
of marginal process

(
Xt

)
t=0,1,2,...

(absorption of solutions); and convergence property of

marginal process
(
Πt

)
t=0,1,2,...

(absorption of models). However, in the present Chapter,
we will concentrate only on finite reachability and runtime analysis. The absorption of
solutions and models will be inspected in Chapter 6.

Conditions guaranteeing to find an optimal solution in finitely many iterations are of
great interests in the theoretical analysis of an optimization algorithm. For some partic-
ular MBS algorithms, there are some conditions available in the literature. In [Gut00]
and [Gut03], W. J. Gutjahr inspected the conditions on a particular ACO algorithm
called GBAS (graph-based ant system). The algorithm learns the empirical distribution
only with the best solution found so far, and uses a constant learning rate ρt ≡ ρ ∈ (0, 1).
In [Gut00], W. J. Gutjahr showed that when |S∗| = 1 i.e. there is a unique optimal so-
lution, the probability for GBAS to reach an optimal solution in finitely many iterations
approaches 1 as the sample size N →∞ or the constant learning rate ρ→ 0. In [Gut03],
he extended the result proposed in [Gut00] by removing the restriction |S∗| = 1, i.e. he
showed that his result in [Gut00] still holds even when |S∗| > 1. In [CJK07], A. Costa et
al inspected the conditions for a generalized cross entropy algorithm on unconstrained
problems, i.e. CE/tdsp (cross entropy algorithm equipped with a sequence of smooth
parameters {ρt}t∈N). They found conditions which imply CE/tdsp reach an optimal
solution in finitely many iterations with probability 1. In [WK14b], we extended the
conditions in [CJK07] to a more general CE i.e. CE/as (ant-like CE, our framework
without memory). In Section 5.3, we continue [Gut00], [Gut03], [CJK07] and [WK14b].
We show that those conditions in the literature still hold in the unified framework, see
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Theorem 5.7. The Theorem does not assume a particular algorithm, and does not im-
pose a particular structure of the underlying CO instances. Therefore, it should apply to
all MBS algorithms which are covered in the framework and to arbitrary CO instance.
In particular, it shows that in the case of ρt ≡ ρ > 0 for a constant ρ, we may never see
an optimal solution. Of cause, here we avoid the trivial case that S = S∗.

Note that ρt ≡ ρ > 0 is a common setting in practice, see Table 4.1. To show more
insight into this case, two runtime results will be proposed in Section 5.4. Recently,
runtime analysis of heuristic algorithms becomes a very popular research field, see e.g.
[NW06], [DNSW07], [DJ07], [NW09], [Gut07], [Gut08], [CTCY10] and [WK14b]. In
runtime analysis, we consider conditions which make the algorithm reach an optimal
solution efficiently (i.e. in a polynomial runtime) with a large probability. Here, the
runtime is a rudimentary copy of the computation complexity [AB09] in theoretical
computer science. Due to the famous No Free Lunch Theorem [WM97], we need to
assume a particular test problem in such an analysis. In [NW06], [DNSW07], [DJ07]
and [NW09], the authors proposed some runtime results for a so-called 1-ANT ACO
algorithm (a simpleMMAS with sample size N = 1 and update models only when new
improvement occurs) on some simple test problems e.g. OneMax and LeadingOne. In
[Gut07], W. J. Gutjahr summarized the commonly used techniques in runtime analysis.
In [Gut08], W. J. Gutjahr proposed a polynomially expected runtime forMMAS on the
OneMax problem. In [CTCY10], Chen et al showed a polynomial runtime for a UMDA
(univariate marginal distribution algorithm with truncate selection) on the LeadingOne
problem. In [WK14b], we showed a polynomial runtime for CE on the LeadingOne
problem. Note that the UDMA inspected in [CTCY10] is actually a particular CE with
a constant smooth parameter ρ = 1. The runtime result in [WK14b] therefore extends
the result in [CTCY10]. Note also that both 1-ANT and MMAS employ restricted
models and anew models only by best solution found so far. However, CE does not use
restricted models, and update models by present solutions (elite solutions). Thereby, our
former result actually complements the results in [NW06], [DNSW07], [DJ07], [NW09]
and [Gut08]. In Section 5.3, we shall collect our former runtime result in Theorem 5.8.
To further understand the role of subsample selection in efficiently finding an optimal
solution, we propose a new runtime result in Theorem 5.9.

The whole Chapter is arranged as: Section 5.1 formally defines the finite reachability
and runtime, and collects some necessary assumptions which are generally fulfilled in
practice; Section 5.2 collects some helpful properties of the underlying process; Section
5.3 concentrates on finite reachability; Section 5.4 concentrates the runtime analysis.
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5.1 Definitions and assumptions

Recall that in the framework the underlying CO instance (S, f, 0) is string encoded, i.e.
S ⊆ AL for a finite alphabet A and a constant L ∈ N. The model family is specified to
be P = Pce, for a definition see (3.2) on p. 17.

5.1.1 Definitions

Let τ ∈ N be a random variable denoting the first hitting time (iteration) for an optimal
solution i.e.

τ := min
{
{t ∈ N | Xt ∩ S∗ 6= ∅} ∪ {∞}

}
(5.1)

where S∗ is the collection of optimal solutions. Then if P
[
τ < ∞

]
= 1, we say that

(almost surely) finite reachability holds. Obviously, finite reachability concerns the ef-
fectiveness of the framework. Therefore, conditions which make finite reachability hold
in the framework should be of great importance. Section 5.3 shall show conditions which
make finite reachability hold in the framework. The conditions do not impose any restric-
tions on the underlying CO instance, thereby apply to all combinatorial optimization
problems.

In the literature, see e.g. [NW06], [DNSW07], [DJ07], [NW09], [Gut07], [Gut08],
[CTCY10] and [WK14b], runtime of an algorithm is generally defined as the total number
of feasible solutions evaluated before reaching an optimal solution. Note that this is
a rudimentary copy of the computational complexity [AB09]. In the framework, the
runtime is obviously N · τ . To express the efficiency of an algorithm, runtime is often
formulated as a function in problem size. In the string encoding, the problem size can
be described by the encoded solutions length. Formally, we say that an algorithm has a
polynomial runtime with degree n ∈ N on a problem1 P if for each instance (S′, f ′, 0) ∈ P
with the encoded solutions length L(S′,f ′,0) ≥ Lthreshold ∈ N, the runtime of the algorithm

is bounded above by a polynomial function c ·
(
L(S′,f ′,0)

)n
, where Lthreshold and c ∈ R+

are constants. By the standard notation in complexity, we can denote this polynomial
runtime as

O
((
L(S′,f ′,0)

)n)
where L(S′,f ′,0) is solution length of an arbitrary instance in problem P.2 Algorithms
with polynomial runtime are considered as efficient, and with low degree polynomial
are practically preferred. Comparatively, an algorithm is inefficient on a problem P if
the runtime is exponential i.e. for each (S′, f ′, 0) ∈ P the runtime is asymptotically
bounded below by an exponential function cL(S′,f ′,0) for some constant c > 1. In runtime
analysis, we inspect conditions which imply (low degree) polynomial runtime with a high
probability. Section 5.4 will present conditions which imply a polynomial runtime on the
two testing problem i.e. OneMax and LeadingOne, with an overwhelming probability.

1Recall that a problem is a class of instance.
2See A. 5 in the Appendix for the big O notation and other notations used in runtime analysis.
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5.1.2 General assumptions

In the sequel, we assume that the starting model Π0 satisfies that any item from A has
a positive probability at any position i :

Π0(a; i) > 0 for all a ∈ A, i = 1, . . . , L. (5.2)

Note that in practice, Π0 is generally taken as a uniform distribution over AL which
meets the assumption (5.2).

Without loss in generality, we may also assume that there are at least two solutions

s = (s1, . . . , sL), s′ = (s′1, . . . , s
′
L) with s1 6= s′1. (5.3)

Otherwise, all solutions would start with the same symbol, which could then be dropped
from the encoding of the solutions.

Note that for a feasible solution s = (s1, . . . , sL) ∈ S, the sampling probability (4.5)

Q
(
s; Π

)
=

L−1∏
i=0

Q
(
si+1; s|i, i+ 1,Π

)
with each

Q(si+1; s|i, i+ 1,Π) =
Π(si+1; i+ 1)Ci(s|i; si+1)∑
a′∈Ci(s|i) Π(a′; i+ 1)Ci(s|i; a′)

,

may be zero even in the case of an uniform Π ∈ P, where recall that s|i = (s1, . . . , si)
and s|0 = �. Therefore, the random solution generation algorithm in Figure 4.1 may run
a risk that an optimal solution can not be sampled under any model Π ∈ P. To save
this, we assume that the constructed feasibility distributions {Ci}L−1

i=0 are compatible to
the optimal solutions, i.e.

L−1∏
i=0

Ci
(
s∗|i; s

∗(i+ 1)
)
> 0 for all s∗ ∈ S∗. (5.4)

And to avoid trivial cases, we assume further that

S 6= S∗ and

L−1∏
i=0

Ci
(
s|i; s(i+ 1)

)
> 0 for some s ∈ S − S∗. (5.5)

Otherwise, the sampling would always produce optimal solutions.
Note that in MBS algorithms, we often need to compare objective values of two dif-

ferent solutions. But, it may occur that two different solutions have the same objective
value. To deal with this embarrassing situation, we assume that

for each iteration t ∈ N if f(X
(n)
t ) = f(X

(m)
t ) and n > m (5.6)

then we think X
(n)
t is better than X

(m)
t , and

for each pair of iterations t ∈ N and t′ ∈ N if f(X
(m)
t ) = f(X

(n)
t′ ) and t < t′ (5.7)
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then we think X
(n)
t′ is better than X

(m)
t . Note that assumptions (5.6) and (5.7) actually

assign the time order to solutions of the same objective value i.e. we think that new
solutions are better than old solutions if they have the same objective values. The
assumptions will be employed only when we need to sort solutions in a collection.

Finally, we give assumptions on the empirical distribution Wt learned by rule L. We
assume that:

i) for all a ∈ A, i ∈ {1, . . . , L}, t ∈ N,

∀s = (s1, . . . , sL) ∈ N b
t si 6= a ⇒ Wt(a; i) = 0, (5.8)

∀s = (s1, . . . , sL) ∈ N b
t si = a ⇒ Wt(a; i) = 1; (5.9)

ii) there exists a constants α ∈ (0, 1) such that for all a ∈ A, i ∈ {1, . . . , L}, t ∈
N,

Wt(a; i) > 0 ⇒ Wt(a; i) > α, (5.10)

Wt(a; i) < 1 ⇒ Wt(a; i) < 1− α. (5.11)

Note that these assumptions are fulfilled in the practically used learning rules. Recall
that practically used learning rules are of two types, namely UL (uniform learning, see
(4.18) on p. 60) and WL (weighted learning, see (4.19)). In UL, Wt(a; i) is the relative
frequency of letter a at position i in the selected subsample N b

t i.e.

Wt(a; i) :=

∑
s∈N bt

1{a}(si)

|N b
t |

for all a ∈ A and i = 1, . . . , L.

Obviously, (5.8) and (5.9) are fulfilled in this case. In WL, each solution in N b
t is

allocated a positive weight according to its cost value. And then Wt(a; i) calculates the
weighted relative frequency of a at position i in N b

t i.e.

Wt(a; i) :=

∑
s∈N bt

1{a}(si)g(s)∑
s∈N bt

g(s)
for all a ∈ A and i = 1, . . . , L,

where g is a positive weight function. Also (5.8) and (5.9) are fulfilled. Both UL and
WL are time-independent learning, i.e. Wt1 = Wt2 if N b

t1 = N b
t2 , for all t1 ∈ N, t2 ∈ N.

Since the state space of
(
N b
t

)
t∈N is SNb and |SNb | <∞, so

α′ := min
{
Wt(a; i) > 0

∣∣ a ∈ A, i = 1, . . . , L, t ∈ N
}
> 0,

β′ := max
{
Wt(a; i) < 1

∣∣ a ∈ A, i = 1, . . . , L, t ∈ N
}
< 1.

Then obviously α := min{α′, 1− β′} fulfills (5.10) and (5.11).
For time-dependent learning (4.20), assumptions (5.8) and (5.9) generally still holds,

but (5.10) and (5.11) may not hold. However, most of the statements in Chapter 5 and
Chapter 6 will still hold, if the allocated learning weights in time-dependent learning
are not changed too dramatically as iteration varies. To simplify the discussion, we will
stick to the case of uniform learning or weighted learning in the sequel.

5.1. DEFINITIONS AND ASSUMPTIONS 71



Ph. D Thesis Technical University of Clausthal

5.2 Some basic properties

As a start of the analysis, we now collect some useful properties about the models
(Πt)t∈N and sampling probabilities (see (4.5) on p. 52), which will be frequently used
in the present Chapter and Chapter 6.

5.2.1 On basic recursion

Recall that basic recursion (4.21)

Πt+1 = (1− ρt+1)Πt + ρt+1Wt

is the employed distribution update rule in the framework, where Πt ∈ P = Pce is the
present model, Wt ∈ P = Pce is the model learned from a selected subsample N b

t ,
ρt+1 > 0 is the learning rate for time t + 1, and Πt+1 ∈ P = Pce is the model for
next round, for t = 0, 1, 2, . . . . To facilitate our analysis, we now collect some useful
statements closely related to this basic recursion in the following Lemma. Here, we use
a convention that empty product equals 1, i.e.

∏t
m=t+1 · · · = 1.

Lemma 5.1. Let 0 < rt < 1 for t = 1, 2, . . ..

a)
∞∑
t=1

rt =∞ ⇐⇒
∞∏
t=1

(1− rt) = 0 ⇐⇒
∞∏
t=1

(1− crt) = 0 for any 0 < c < 1.

b)
t∑

m=1

rm

t∏
i=m+1

(1− ri) = 1−
t∏

m=1

(1− rm) for any t ≥ 1.

c) For a given sequence wt ∈ [0, 1], t = 0, 1, . . . and q0 ∈ (0, 1), the recursion

qt+1 = (1− rt+1)qt + rt+1wt, t ≥ 0, (5.12)

has the unique solution

qt = q0

t∏
m=1

(1− rm) +
t∑

m=1

rmwm−1

t∏
i=m+1

(1− ri) (5.13)

with

0 < q0

t∏
m=1

(1− rm) ≤ qt ≤ 1− (1− q0)
t∏

m=1

(1− rm) < 1, t ≥ 0. (5.14)

If, in particular, wm ≡ w ∈ [0, 1] for m = 0, . . . , t− 1 then

qt = w − (w − q0) ·
t∏

m=1

(1− rm). (5.15)
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And furthermore if we allow some rt = 1, then b), (5.13) and (5.15) still hold, and (5.14)
becomes

0 ≤ q0

t∏
m=1

(1− rm) ≤ qt ≤ 1− (1− q0)
t∏

m=1

(1− rm) ≤ 1, t ≥ 0.

Proof. (see also [WK14b] and [WK14a])
a) The first part is a standard result of infinite products, see e.g. [Kno90], the second
follows as

∞∑
i=0

ri =∞ ⇐⇒
∞∑
i=0

cri =∞.

b) Note that ri = 1− (1− ri). Then

t∑
m=1

rm

t∏
i=m+1

(1− ri) =
t∑

m=1

[
1− (1− rm)

] t∏
i=m+1

(1− ri)

=
t∑

m=1

t∏
i=m+1

(1− ri)−
t∑

m=1

t∏
i=m

(1− ri)

= 1 +
t−1∑
m=1

t∏
i=m+1

(1− ri)−
t∑

m=2

t∏
i=m

(1− ri)−
t∏

m=1

(1− rm)

= 1−
t∏

m=1

(1− rm).

c) (5.13) can be proven using induction on t. (5.15) follows from (5.13) using b). Then
(5.14) follows immediately from the facts that

0 ≤
t∑

m=1

rmwm−1

t∏
i=m+1

(1− ri) ≤
t∑

m=1

rm

t∏
i=m+1

(1− ri) = 1−
t∏

m=1

(1− rm).

Applying Lemma 5.1 c) to the basic recursion (4.21), we immediately get that

Lemma 5.2. If the learning rate ρt ∈ (0, 1] for each t = 1, 2, . . . , then the following hold
for all t, k ≥ 0, a ∈ A and i = 1, . . . , L :

a) Πt(a; i)
∏k
m=1(1− ρt+m) ≤ Πt+k(a; i) ≤ 1−

(
1−Πt(a; i)

)∏k
m=1(1− ρt+m);

b) Wt(a; i) = · · · = Wt+k−1(a; i) = 0 ⇒ Πt+k(a; i) = Πt(a; i)
∏k
m=1(1− ρt+m), and

if we assume further that ρt ∈ (0, 1) for all t ∈ N, then the inverse implication also
holds;
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c) for all m = 0, . . . , k − 1

Wt+m(a; i) ≡ 1 ⇒ Πt+k(a; i) = 1−
(
1−Πt(a; i)

) k∏
m=1

(1− ρt+m),

and if we assume further that ρt ∈ (0, 1) for all t ∈ N, then the inverse implication
also holds;

d) if ρm ∈ (0, 1) for all m ≤ t, 0 < Πt(a; i) < 1;

e) if
∏∞
t=1(1− ρt) = 0 and limt→∞Wt(a; i) = w, then limt→∞Πt(a; i) = w.

Proof. Statements a)-d) follows immediately from c) of Lemma 5.1 with observation to
the assumption (5.2). Now, we prove statement e).

Assume that
∏∞
t=1(1−ρt) = 0 and Wt(a; i)→ w as t→∞. Let ε > 0 be an arbitrarily

fixed constant. Then there exists an T ∈ N such that

w + ε ≥Wt(a; i) ≥ w − ε for all t ≥ T.

Then by (5.13) and b) of Lemma 5.1, we have that

(w + ε)−
(
(w+ε)− 1

) t∏
m=T+1

(1− ρm) ≥

(w + ε)−
(
(w + ε)−ΠT (a; i)

) t∏
m=T+1

(1− ρm) ≥

Πt(a; i) ≥ (w − ε)−
(
(w − ε)−ΠT (a; i)

) t∏
m=T+1

(1− ρm)

≥ (w − ε)− (w − ε)
t∏

m=T+1

(1− ρm)

for all t ≥ T + 1. Since
∏∞
m=1(1 − ρm) = 0,

∏∞
m=T+1(1 − ρm) = 0 for any fixed T ∈ N.

Consequently, we have

w + ε ≥ lim sup
t→∞

Πt(a; i) ≥ lim inf
t→∞

Πt(a; i) ≥ w − ε.

Note that ε is arbitrarily fixed, this results in

w = lim sup
t→∞

Πt(a; i) = lim inf
t→∞

Πt(a; i) = lim
t→∞

Πt(a; i).

Lemma 5.2 e) actually means that the limiting behavior of the models is dominated
by the limiting behavior of the learned empirical distributions. Hence, in the sequel
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when we want to derive a limit of the models, we often derive a limit for the empirical
distributions in advance.

For a constructed feasibility distributions {Ci}L−1
i=0 and a feasible solution s = (s1, . . . , sL) ∈

S, we say that s is compatible to or feasible under {Ci}L−1
i=0 if and only if

L−1∏
i=0

Ci
(
s|i; si+1

)
> 0.

As a result of Lemma 5.2 d), we have immediately that

Lemma 5.3. Let {Ci}L−1
i=0 be the feasibility distributions and ρt ∈ (0, 1) for all t ∈ N,

then for any s ∈ S which is compatible to {Ci}L−1
i=0 , the probability Q(s; Πt) > 0 for all

t ≥ 0 where Q is defined in (4.5), i.e.

Q(s; Πt) =
L−1∏
i=0

Q
(
si+1; s|i, i+ 1,Πt

)
and

Q
(
si+1; s|i, i+ 1,Πt

)
=

Ci(s|i; si+1)Πt(si+1; i+ 1)∑
a∈Ci(s|i)Ci(s|i; a)Πt(a; i+ 1)

. (5.16)

In particular, for each s∗ ∈ S∗, Q(s∗; Πt) > 0 for all t ≥ 0.

Note that a feasible solution can be sampled only if it is compatible to the constructed
feasibility distributions. Due to this fact, in the sequel when we refer to feasible solutions,
we mean those which are feasible under (compatible to) the feasibility distributions.
Note also that with assumption (5.4), optimal solutions are always feasible under the
feasibility distributions. Hence, Lemma 5.3 shows that in each iteration optimal solutions
can always have a positive chance to be sampled provided ρt ∈ (0, 1) for all t ∈ N. But
in the case ρt = 1 for some t ∈ N, this is not guaranteed.

5.2.2 A surrogate probability of Q(·; y, i,Π) and its properties

To theoretically study the framework, we need to study the letter selection probability
Q(·; y, i,Π) (defined in (4.4), see also (5.16)) more closely.

For the unconstrained non-greedy feasibility construction (see (4.6)), Q(a; y, i,Π) =
Π(a; i) holds for all a ∈ A, Π ∈ P and i = 1, . . . , L. Therefore, in this case Lemma (5.1)
c) directly applies to Q(a; y, i,Πt) for all a ∈ A, y ∈ Ri−1, t ≥ 0 and i = 1, . . . , L. In
general, this is not possible as Q(a; y, i,Πt) does not fulfill the recursion (5.12). But
we can find a surrogate probability Q′(a; y, i,Πt) for Q(a; y, i,Πt), for which a similar
recursion holds under certain conditions.

The surrogate probability Q′(a; y, i,Πt) using here is also the one defined in (4.7), i.e.
the selection probability for non-greedy feasibility construction. For a feasible partial
solution y ∈ Ri−1, a letter a ∈ A, a position i = 1, . . . , L, and a model Π ∈ P, we set

Q′(a; y, i,Π) :=
1Ci−1(y)(a)Π(a; i)∑
b∈A 1Ci−1(y)(b)Π(b; i)

(5.17)
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where we again use the convention that 0
0 = 0. Obviously, for an unconstrained non-

greedy feasibility construction, we have Q(a; y, i,Π) = Q′(a; y, i,Π) = Π(a; i), and for a
non-greedy feasibility construction, we have Q(a; y, i,Π) = Q′(a; y, i,Π).

In general, although Q(a; y, i,Π) 6= Q′(a; y, i,Π), we can employ this surrogate proba-
bility to boundQ. To do this, we need bounds for the constructed feasibility distributions.
Let

η := max {Ci(y; a)|y ∈ Ri, a ∈ A, i = 0, 1, 2, . . . , L− 1} (5.18)

and
λ := min {Ci(y; a) > 0|y ∈ Ri, a ∈ A, i = 0, 1, 2, . . . , L− 1} . (5.19)

Obviously, 1 ≥ η ≥ λ > 0. Now, we define two bounding functions ~(x) and `(x) for
x ∈ [0, 1] as

~(x) :=
ηx

λ+ (η − λ)x
and `(x) :=

λx

η − (η − λ)x
. (5.20)

The following Lemma collects some properties of these two bounding functions.

Lemma 5.4. a) `(x) ≤ x ≤ ~(x), ~(x) = 1− `(1− x) and `(x) = 1− ~(1− x).

b) ~ and ` are both continuous and strictly increasing with `(0) = ~(0) = 0, `(1) =
~(1) = 1.

c) Suppose {xn}n∈N is a convergent sequence in [0, 1] then for any constant c ∈ (0, 1],
we have

∑
n xn <∞ ⇐⇒ ∑

n ~(cxn) <∞ ⇐⇒ ∑
n `(cxn) <∞.

The proof of Lemma 5.4 can be found in [WK14b]. With the help of Q′, ~ and `, we
can bound Q as

Lemma 5.5. Let i ∈ {0, 1, 2, . . . , L− 1} , y ∈ Ri, and a ∈ Ci(y). Then the following
holds.

a) `
(
Q′(a; y, i+ 1,Πt)

)
≤ Q(a; y, i+ 1,Πt) ≤ ~

(
Q′(a; y, i+ 1,Πt)

)
for all t ∈ N.

b) Assume ρt ∈ (0, 1) for all t ∈ N. If |Ci(y)| = 1 then Q(a; y, i+ 1,Πt) = Q′(a; y, i+
1,Πt) = 1. If |Ci(y)| > 1, then 0 < Q′(a; y, i + 1,Πt) < 1 and 0 < Q(a; y, i +
1,Πt) < 1 for any t ≥ 0.
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Proof. a)

Q(a; y, i+ 1,Πt) =
Πt(a; i+ 1)Ci(y; a)∑

a′∈AΠt(a′; i+ 1)Ci(y; a′)

=
Ci(y; a)Πt(a; i+ 1)

Ci(y; a)Πt(a; i+ 1) +
∑

a′∈Ci(y),a6=a′ Πt(a′; i+ 1)Ci(y; a′)

≤ ηΠt(a; i+ 1)

ηΠt(a; i+ 1) +
∑

a′∈Ci(y),a6=a′ Πt(a′; i+ 1)Ci(y; a′)

≤ ηΠt(a; i+ 1)

ηΠt(a; i+ 1) +
∑

a′∈Ci(y),a6=a′ λΠt(a′; i+ 1)

=
ηΠt(a; i+ 1)

ηΠt(a; i+ 1) + λ
∑

a′∈Ci(y),a6=a′ Πt(a′; i+ 1)

=
ηΠt(a; i+ 1)

(η − λ)Πt(a; i+ 1) + λ
∑

a′∈Ci(y) Πt(a′; i+ 1)

=
ηQ′(a; y, i+ 1,Πt)

(η − λ)Q′Πt
(a; y, i+ 1,Πt) + λ

= ~
(
Q′(a; y, i+ 1,Πt)

)
,

Similarly, the left-hand inequality of a) is derived.
b) From d) of Lemma 5.2 and (5.17), we have Q′(a; y, i+ 1,Πt) > 0 for all t ∈ N. If
|Ci(y)| > 1, we see that Q′(a; y, i+ 1,Πt) < 1 for any a ∈ Ci(y) and t ∈ N, this implies
the conclusion by Lemma 5.4 b) and part a) of this Lemma.

As we have mentioned above, the surrogate probability fulfills the recursion (5.12)
under certain conditions. Now, we give such a condition in (5.23) and show the recursion
relation in Lemma 5.6 below. Before this, we need two auxiliary definitions.

For a letter a ∈ A, a position i = 1, . . . , L and a partial feasible solution y ∈ Ri−1, we
define

Gi−1(y,Πt) :=
∑

a∈Ci−1(y)

Πt(y; a) and (5.21)

ρyt :=
ρt

Gi−1(y,Πt)
(5.22)

for t ≥ 1.

Lemma 5.6. Assume ρt ∈ (0, 1] for all t ∈ N. Let i ∈ {0, 1, 2, . . . , L − 1} be fixed and
assume

∀m− 1 ≥ l ≥ 0
∑

a∈Ci(y)

WT+l(a; i+ 1) = 1 (5.23)

holds for an arbitrary partial solution y ∈ Ri, a random time T ∈ N and some constant
m ∈ N. Then the following hold.
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a) For all m ≥ m′ ≥ 1,

Gi(y,ΠT+m′) = 1−
(
1−Gi(y,ΠT )

) m′∏
l=1

(1− ρT+l) and

0 < 1−
m′∏
l=1

(1− ρT+l) ≤ Gi(y,ΠT+m′) ≤ 1.

b) For all m ≥ l ≥ 1, 0 < ρT+l ≤ ρyT+l ≤ 1. And furthermore

ρT+l < 1 ⇐⇒ ρyT+l < 1 for all m ≥ l ≥ 2,

and if ρt ∈ (0, 1) for all 0 < t ≤ T then we have

ρT+1 < 1 ⇐⇒ ρyT+1 < 1.

c) For all a ∈ Ci(y) and all m ≥ l ≥ 1 we have

Q′(a; y, i+ 1,ΠT+l) = (1− ρyT+l)Q
′(a; y, i+ 1,ΠT+l) + ρyT+lWT+l(a; i+ 1).

(5.24)

Thus the implications of Lemma 5.1 c) hold with qt := Q′(a; y, i+ 1,ΠT+t), rt :=
ρyT+t and wt := WT+t(a; i+ 1).

d) If WT+l(a; i+ 1) = w ∈ [0, 1] for all l = 0, . . . ,m− 1, then

Q′(a; y, i+ 1,ΠT+m) = w −
(
w −Q′(a; y, i+ 1,ΠT )

) m∏
l=1

(1− ρyT+l) (5.25)

≥ w −
(
w −Q′(a; y, i+ 1,ΠT )

) m∏
l=1

(1− ρT+l) (5.26)

Proof of Lemma 5.6. a) from the basic recursion (4.21) we have for any m ≥ l ≥ 1

Gi(y,ΠT+l) =
∑

a′∈Ci(y)

ΠT+l(a
′; i+ 1) (5.27)

=
∑

a′∈Ci(y)

(
(1− ρT+l)ΠT+l−1(a′; i+ 1) + ρT+l WT+l−1(a′; i+ 1)

)
= (1− ρT+l)Gi(y,ΠT+l−1) + ρT+l,

as
∑

a′∈Ci(y) WT+l−1(a′; i + 1) = 1 under assumption (5.23). Hence, qt := Gi(y,ΠT+t)
fulfills the condition (5.12) of Lemma 5.1 with wl ≡ 1. Now (5.15) shows that

Gi(y,ΠT+m′) = 1−
(
1−Gi(y,ΠT )

) m′∏
l=1

(1− ρT+l).

5.2. SOME BASIC PROPERTIES 78



Ph. D Thesis Technical University of Clausthal

Obviously, Gi(y,ΠT ) ∈ [0, 1] and

1−
(
1−Gi(y,ΠT )

) m′∏
l=1

(1− ρT+l)

is increasing as Gi(y,ΠT ) ∈ [0, 1], so the remaining holds.
b) From (5.27) we now see 0 < ρT+l ≤ Gi(y,ΠT+l), hence ρyt ≤ 1 for all m ≥ l ≥ 1

By a) of this Lemma 0 < Gi(y,ΠT+l) ≤ 1. So we have 0 < ρT+l ≤ ρyT+l ≤ 1 for all
m ≥ l ≥ 1.

Assume m ≥ l ≥ 2. Then by a) of this Lemma and (5.27), we have

ρT+l < 1 ⇐⇒ ρyT+l < 1 for all m ≥ l ≥ 2.

Note that if ρt ∈ (0, 1) for all t ≤ T, we have Gi(y; ΠT ) > 0 by d) of Lemma 5.2.
Therefore

ρT+1 < 1 ⇐⇒ ρyT+1 < 1.

c) From (5.27) we obtain that for all m ≥ l ≥ 1

(1− ρT+l)Gi(y,ΠT+l−1) = Gi(y,ΠT+l)− ρT+l.

This together with the basic recursion (4.13) for Πt shows that Q′ fulfills the recursion

Q′(a; y, i+ 1,ΠT+l) =
ΠT+l(a; i+ 1)

Gi(y,ΠT+l)

=
(1− ρT+l)ΠT+l−1(a; i+ 1)

Gi(y,ΠT+l)
+
ρT+l WT+l−1(a; i+ 1)

Gi(y,ΠT+l)

=
(1− ρT+l)Gi(y,ΠT+l−1)

Gi(y,ΠT+l)
Q′(a; y, i+ 1,ΠT+l−1) + ρyT+l WT+l−1(a; i+ 1)

= (1− ρyT+l)Q
′
ΠT+l−1

(a; i+ 1, y) + ρyT+l WT+l−1(a; i+ 1).

d) From part c) and Lemma 5.1 (5.15) with q0 = Q′(a; y, i+ 1,ΠT ) we obtain

Q′(a; y, i+ 1,ΠT+m) = w −
(
w −Q′(a; y, i+ 1,ΠT )

) m∏
l=1

(1− ρyT+l).

Since

w −
(
w −Q′(a; y, i+ 1,ΠT )

) m∏
l=1

(1− ρyT+l)

is increasing as ρyT+l, then by part b) the remaining holds.

Note that [WT (a; i+ 1) = · · · = WT+m−1(a; i+ 1) = 1] or

[∀l = 0, . . . ,m− 1 ∀s ∈ XT+l ∪MT+l s|i = y]
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fulfill the condition (5.23) in Lemma 5.6. Lemmas 5.5 and 5.6 take pivotal roles in
the subsequent proofs. In the sequel, if we need the bounds of Q, we first use Lemma
5.6 to get a suitable bound of Q′, and then bound Q through the bounding functions
` and ~ by Lemma 5.5. For example, we may need to calculate the lower bound of
Q(a; y, i + 1,ΠT+m) in the case WT (a; i + 1) = · · · = WT+m−1(a; i + 1) = 1. Then, by
d) of Lemma 5.6, we have

Q′(a; y, i+ 1,ΠT+m) ≥ 1−
(
1−Q′(a; y, i+ 1,ΠT )

) m∏
l=1

(1− ρT+l)

≥ 1−
m∏
l=1

(1− ρT+l).

By a) of Lemma 5.5 and a) of Lemma 5.4, we have

Q(a; y, i+ 1,ΠT+m) ≥ `
[
Q′(a; y, i+ 1,ΠT+m)

]
= `
[
1−

m∏
l=1

(1− ρT+l)
]

= 1− ~
[ m∏
l=1

(1− ρT+l)
]
. (5.28)
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5.3 On the reachability of optimal solutions

In this Section, we investigate conditions which guarantee to find an optimal solution in
finitely many iterations. We first review the related work in the literature with details.
Then we present a unified Theorem which extends all these findings to our more general
framework.

5.3.1 Related work

The first literature who considered conditions for finite reachability in the theoretical
analysis of MBS are [Gut00] and [Gut03]. In this two papers, W. J. Gutjahr showed
that

P
[
τ <∞

]
→ 1 as ρ→ 0 or N →∞

for his GBAS algorithm, see (5.1) for a definition of τ . GBAS can be described by our
framework with a strategy of ρt ≡ ρ > 0,M = GTMU (global truncate memory), S = TS
(truncate selection), L = WL (weighted learning) and M = Nb = 1 (M the memory size
and Nb the subsample size), see also Table 4.1. Another literature concerning conditions
for finite reachability is [CJK07]. In which A. Costa et al inspected a CE algorithm on
an unconstrained underlying CO instance. They showed that

∞∑
t=1

t∏
m=1

(1− ρm)L =∞ ⇒ P
[
τ <∞

]
= 1

and if there is a unique optimal solution i.e. |S∗| = 1,

P
[
τ <∞

]
= 1 ⇒

∞∑
t=1

t∏
m=1

(1− ρm) =∞.

In [WK14b], we considered a more general CE algorithm which covers the essential part
of AS (ant system). We showed in [WK14b] that the conditions in [CJK07] for finite
reachability still holds in that more general algorithm.

5.3.2 A unified theorem for reachability of optimal solutions

Theorem 5.7 below continues our former work in [WK14b]. It shows that the conditions
for finite reachability presented in that publication still hold in the unified framework.
Note that this Theorem does not require the details of the memory update rules, the
subsample selection rules or the learning rules. Therefore, it applies to all algorithms
covered by the framework.

Theorem 5.7. a) If
∑∞

t=1

∏t
m=1(1− ρm)L =∞ then P(τ <∞) = 1.

b) If P(τ <∞) = 1 then
∑∞

t=1

∏t
m=1(1− ρm) =∞.

c) If ρt ≡ ρ > 0 is a constant, then we have P(τ <∞) < 1, but P(τ <∞)→ 1 if
either N →∞ or ρ→ 0.
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proof of Theorem 5.7. a) We fix an arbitrary optimal solution s∗ =
(
s∗1, . . . , s

∗
L

)
∈ S∗,

then by definition (5.1) we have

P(τ =∞) = P
( ∞⋂
t=0

[S∗ ∩Xt = ∅]
)
≤ P

( ∞⋂
t=0

[s∗ /∈ Xt]
)

= P(s∗ /∈ X0)

∞∏
t=1

P
[
s∗ /∈ Xt | s∗ /∈ Xm,m = 0, . . . , t− 1

] (5.29)

We now derive an upper bound for the factors in (5.29). First we have

P
[
s∗ /∈ Xt | s∗ /∈ Xm,m = 0, . . . , t− 1

]
(5.30)

= E
[
P
[
s∗ /∈ Xt | Πt

] ∣∣∣ s∗ /∈ Xm,m = 0, . . . , t− 1
]
.

Observe that for all a ∈ A, y ∈ Ri−1, i ∈ {1, . . . , L} and t ≥ 0, we have

Q(a; y, i,Πt) =
Πt(a; i)Ci−1(y, a)∑

a′∈Ci−1(y) Πt(a′; i)Ci−1(y, a′)
≥ Πt(a; i)Ci−1(y, a)

because of the fact that 0 ≤∑a′∈Ci−1(y) Πt(a
′; i)Ci−1(y, a′) ≤ 1. And by (5.14) of Lemma

5.1, we know that

Πt(y; a) ≥ Π0(a; i)
t∏

m=1

(1− ρm).

As the solutions are sampled i.i.d. we may now conclude

P
[
s∗ /∈ Xt | Πt

]
(5.31)

=
(
P
[
s∗ 6= X

(1)
t | Πt

])N
=
(

1−P
[
s∗ = X

(1)
t | Πt

])N
=
(

1−Q(s∗1; �, 1,Πt)
L∏
i=2

Q
(
s∗i ; (s∗1, . . . , s

∗
i−1), i,Πt

))N
≤
(

1−Πt(s
∗
1; 1)C0(�, s∗1)

L∏
i=2

[
Πt(s

∗
i ; i) Ci−1

(
(s∗1, . . . , s

∗
i−1), s∗i

)])N

=
(

1− c(s∗)
L∏
i=1

Πt(s
∗
i ; i)

)N
≤
(

1− c(s∗)
L∏
i=1

[
Π0(s∗i ; i)

t∏
m=1

(1− ρm)
])N

≤
(

1− δ(s∗)
t∏

m=1

(1− ρm)L
)N

where

c(s∗) :=
L−1∏
i=0

ci
(
(s∗1, . . . , s

∗
i ); s

∗
i+1

)
> 0
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under assumption (5.4), and

δ(s∗) := c(s∗)
L∏
i=1

Π0

(
s∗i ; i

)
> 0

under assumption (5.2).
For the first factor in (5.29) we have from (5.31) for t = 0

P(s∗ /∈ X0) ≤
(

1− δ(s∗)
)N

.

Combining these results we obtain

P(τ <∞) = 1−P(τ =∞)

≥ 1−
[ ∞∏
t=0

(
1− δ(s∗)

t∏
m=1

(1− ρt)L
)]N

. (5.32)

When
∞∑
t=1

t∏
m=1

(1− ρm)L =∞,

by a) of Lemma 5.1 we have

[ ∞∏
t=0

(
1− δ(s∗)

t∏
m=1

(1− ρt)L
)]N

= 0.

Which in turn implies P[τ <∞] = 1.
b) By assumption (5.5), we arbitrarily pick an s ∈ S − S∗ which is compatible to the

feasibility constructions. We write X
(·)
t ≡ s for X

(n)
t = s, n = 1, . . . , N and S for the

event X
(·)
m ≡ s for all m = 0, . . . , t− 1. Then, as samples are i.i.d.,

P
[
X

(·)
t ≡ s, t = 0, 1, . . .

]
= P

[
X

(·)
0 ≡ s

] ∞∏
t=1

P
[
X

(·)
t ≡ s

∣∣ X(·)
m ≡ s for m = 0, . . . , t− 1

]
= P

[
X

(1)
0 = s

]N · ∞∏
t=1

P
[
X

(1)
t = s

∣∣ S ]N
(5.33)

We have P(X
(1)
0 = s) = Q(s; Π0) for the first factor. Using the lower bound in Lemma
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5.5 a) we obtain for the other factors in (5.33) with s|i := (s1, . . . , si)

P
[
X

(1)
t = s

∣∣ S ]
= P

[
X

(1)
t (1) = s1

∣∣ S ]
·
L∏
i=2

P
[
X

(1)
t (i) = si

∣∣ X
(1)
t (1, . . . , i− 1) = s|i−1, S

]
= E

[
Q(s1; �, 1,Πt)

∣∣ S ]
·
L∏
i=2

E
[
Q(si; s|i−1, i,Πt)

∣∣ X
(1)
t (1, . . . , i− 1) = s|i−1, S

]
≥

L∏
i=1

E
[
`
(
Q′(si; s|i−1, i,Πt)

)∣∣ S ]
with s|0 = �.

Since M0 = ∅ and Mm+1 is a subsample of Mm ∪ Xm for each m ∈ N, under the
condition S we have

Mm ∪Xm = (s, . . . , s) for all m = 0, . . . , t− 1.

This in turn implies that

N b
m = (s, . . . , s) for all m = 0, . . . , t− 1.

Therefore, with the assumption (5.9) Wm(si; i) all equal 1 for all i = 1, . . . , L and all
m = 0, . . . , t− 1. Hence we may use Lemma 5.6 d) to obtain

Q′(si; s|i−1, i,Πt) ≥ 1−
t∏

m=1

(1− ρm)

for t ≥ 1 and i = 1, . . . , L. Now, from (5.33) we obtain using Lemma 5.4 a)

P
[
X

(·)
t ≡ s, t = 0, 1, . . .

]
(5.34)

≥ Q(s,Π0)N
∞∏
t=1

[ L∏
i=1

`
(
1−

t∏
m=1

(1− ρm)
)]N

= Q(s,Π0)N
[ ∞∏
t=1

(
1− h

( t∏
m=1

(1− ρm)
))]LN

By the assumption (5.2), we know that Q(s,Π0) > 0. And by (5.34) P(τ < ∞) = 1
requires

0 = Q(s,Π0)N
[ ∞∏
t=1

(
1− h

( t∏
m=1

(1− ρm)
))]LN

.

5.3. ON THE REACHABILITY OF OPTIMAL SOLUTIONS 84



Ph. D Thesis Technical University of Clausthal

As a result, P(τ <∞) = 1 requires

0 =
[ ∞∏
t=1

(
1− h

( t∏
m=1

(1− ρm)
))]LN

which in turn implies
∞∑
t=1

~
( t∏
m=1

(1− ρm)
)

=∞.

By Lemma 5.4 c) this is equivalent to

∞∑
t=1

t∏
m=1

(1− ρm) =∞

since

xt :=

t∏
m=1

(1− ρm)→
∞∏
m=1

(1− ρm) as t→∞.

c) Obviously if ρt ≡ ρ > 0, P(τ <∞) < 1 since
∑∞

t=1(1− ρ)t = 1−ρ
ρ <∞. By (5.32),

in this case

P(τ <∞) = 1−P(τ =∞) ≥ 1−
[ ∞∏
t=0

(
1− δ(s∗)(1− ρ)t·L

)]N
.

Note that when ρ > 0,

1 >
∞∏
t=0

(
1− δ(s∗)(1− ρ)t·L

)
≥ 0.

Hence P(τ <∞)→ 1 as N →∞. Note also that

∞∏
t=0

(
1− δ(s∗)(1− ρ)t·L

)
→ 0 as ρ→ 0,

so as ρ→ 0, P(τ <∞)→ 1.

The conditions in a) and b) of Theorem 5.7 may require us to reduce the learning
rates fast, e.g.

ρm = 1−
L
√

m

m+ 1
for all m ≥ 1. (5.35)

Recall that in each iteration, ρt+1 reflects the relative importance of the learned empiri-
cal distribution Wt in the construction of the next model Πt+1, see the basic recursion
(4.21). The empirical distribution Wt actually concentrates on a local area closely
around N b

t . Therefore, ρt+1 can be seen as a measure for the strength of a local ex-
ploitation in that area in iteration t+ 1. A higher ρt+1 makes algorithm emphasize more
on the local exploitation. Reducing the learning rates fast means that the search em-
phasis may gradually shift from local exploitation to a biased global exploration as time
goes. This makes the algorithm escape from a local trap more easily in the later stage,
hence guarantees to reach an optimal solution in finitely many iterations.
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5.4 Some runtime analysis results

The analysis in Section 5.3 assumes an arbitrary CO instance. Therefore, the results are
universal i.e. do not depend on problems. A drawback in this kind of analysis is that
we can not give any insight to the bound of τ even in the case that finite reachability is
guaranteed.

To give some insights to the bound of τ, we need to do a runtime analysis. This
Section gives two runtime results for the framework. Due to the popularity of the case
ρt ≡ ρ > 0 in practice, we shall assume a constant learning rate ρt ≡ ρ > 0 in this
Section.

5.4.1 Definitions of two test problems

As mentioned, in runtime analysis, we need assume a particular test problem. The
frequently used test problems are LeadingOne and OneMax, see e.g. [NW06], [DNSW07],
[DJ07], [NW09], [Gut07], [Gut08], [CTCY10] and [WK14b]. We now formally define
these two problems.

In OneMax problem and LeadingOne problem, we consider the unconstrained case
with alphabet {0, 1}, i.e. a CO instance (S, f, 0) with S = {0, 1}L. And we use the
non-greedy feasibility construction, i.e. Q

(
a; y, i,Πt

)
= Πt(a; i) for all a ∈ {0, 1}, y ∈

{0, 1}i−1 and i = 1, . . . , L. The cost function for OneMax is defined as

f(s) := L−
L∑
i=1

si for all s = (s1, . . . , sL) ∈ S. (5.36)

Note that minimizing (5.36) is equivalent to maximizing the number of 1s in a solution.
Obviously, the unique optimal solution is (1, 1, . . . , 1) which has a cost value 1.

For LeadingOne problem, the corresponding cost function is defined as

f(s) := L−
L∑
l=1

l∏
i=1

si + 1 for all s = (s1, . . . , sL) ∈ S. (5.37)

Minimizing (5.37) is intrinsically equivalent to maximizing the number of consecutive
1s counted from the left of the solution. And the unique optimal solution is again
(1, 1, . . . , 1) with a cost value 1.

5.4.2 Runtime results for unrestricted models

From Theorem 5.7 c), we know that for the case of ρt ≡ ρ > 0, finite reachability can
not be guaranteed i.e. P

[
τ = ∞

]
> 0. This results in an infinite expected runtime.

However, it does not mean that this setting is harmful. In [CTCY10] for a UMDA
algorithm (i.e. our framework with ρt ≡ ρ = 1, non-memory, truncate selection for
subsample, and uniform learning) on LeadingOne problem, Chen et al showed that if we

5.4. SOME RUNTIME ANALYSIS RESULTS 86



Ph. D Thesis Technical University of Clausthal

take sample size N = L2+ε for some constant ε ∈ (0, 1) and subsample size Nb = β ·N
for a constant β ∈ (0, 1), then

P
[
τ < 4 · L

]
→ 1 as L→∞.

This means that with a large probability, the runtime of the UDMA on LeadingOne is
O(L3+ε).

The following Theorem is a runtime result proposed in our former work [WK14b]. It
extends the results in [CTCY10] to a more general case that ρt ≡ ρ > 0. The Theorem
essentially states that if we take ρt ≡ ρ ∈ (0, 1) and let the sample size grow as N = L2+ε

for some ε > 0, then we may reach an optimal solution in L iterations with a probability
converging to 1, i.e. the runtime is O(L3+ε) in a stochastic sense.

Theorem 5.8. Suppose that we do not use memory (M = NM), select the subsample
N b
t with truncate selection (S = TS), employ the uniform learning (L = UL) and uncon-

strained non-greedy feasibility distributions. Let ρt ≡ ρ ∈ (0, 1), sample size N = L2+ε

for some ε > 0 and Nb = bβNc for some 0 < β < 1
3e

∏∞
m=1

(
1 − (1 − ρ)m

)
. Let

each Π0(1, i) = 1
2 , i.e. we start with the uniform distribution. Then for a LeadingOne

problem, defined in (5.37), we have P(τ < L)→ 1 as L→∞.

Here, recall that with M = NM, we identify Mt ≡ ∅ for all t ∈ N; with S = TS,
we select Nb best solutions in Mt ∪Xt as the subsample N b

t ; with L = UL, we use the
relative frequencies as Wt, i.e.

Wt(a; i) =

∑
s=(b1,...,bL)∈N bt

1{a}(bi)

Nb

for each a ∈ A = {0, 1} and i = 1, . . . , L; in unconstrained non-greedy feasibility con-
struction,

Ci(y; a) =
1

|A| =
1

2

for each feasible partial string y and letter a ∈ A, and this makes Q(a; y, i + 1,Πt) =
Πt(a; i+ 1) for each t = 0, 1, 2, . . . .

Proof of Theorem 5.8. See also [WK14b]. With A = {0, 1}, we write πt(i) := Πt(1; i)
for all t ∈ N and i = 1, . . . , L. As we consider the unconstrained case and use non-
greedy feasibility distributions here, Q(1; y, i,Πt) = πt(i) for all i = 0, . . . , L − 1, y ∈
{0, 1}i and t ∈ N. Then the sample Xt = (X

(1)
t , . . . ,X

(N)
t ) can be viewed as a random

matrix with mutually independent entries and solution X
(n)
t as n-th row. We denote by

X
[·]
t =

(
X

[1]
t , . . . ,X

[N ]
t

)
the corresponding ordered matrix with rows ordered according

to increasing cost function values :

f(X
[1]
t ) ≤ · · · ≤ f(X

[N ]
t ).
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Since we use NM memory update and TS subsample selection, N b
t is the sub-matrix

of the first Nb rows of X
[·]
t . Because we use UL learning, the empirical distributions from

N b
t may be then written as

Wt(1; i) =
1

Nb

Nb∑
n=1

X
[n]
t (i) =: wt(i)

and wt := (wt(1), . . . , wt(L)).
For the proof we let wt, t = 0, 1, . . . move over a sequence of increasing levels w∗t .

These levels are defined in such a way that the LeadingOne cost value f(Xt) is strictly
decreasing and at the same time the update of πt can be controlled such that we are
able to give a lower bound on the probability for this to happen.

For t = 0, . . . , L− 1 let

w∗t :=
(
w∗t (1), . . . , w∗t (L)

)
:= (1, . . . , 1, αt, . . . , αt) (5.38)

with t+ 1 entries ‘1’ and some αt ∈ (0, 1) to be defined below. We write wt � w∗t if and
only if wt(i) = 1 for i = 1, . . . , t + 1 and wt(i) ≥ αt for i = t + 2, . . . , L. For t = L − 1,
wt � w∗t means that N b

t consists of the optimal solution s∗ = (1, . . . , 1) only. Hence we
have

P(τ < L) ≥ P(wL−1 � w∗L−1) ≥ P
(
w0 � w∗0, . . . , wL−1 � w∗L−1

)
(5.39)

= P(w0 � w∗0)
L−1∏
t=1

P
[
wt � w∗t | wm � w∗m,m = 0, . . . , t− 1

]
.

We show below that there are constants a, b, c > 0 such that for all L large enough and
for all N

P
[
wt � w∗t | wm � w∗m,m = 0, . . . , t− 1

]
≥ (1− e−aN )

(
1− e−b

N
L2 +c)L−t−1

. (5.40)

With N = L2+ε for some ε > 0 we may then conclude that

P(τ < L) ≥ (1− e−aL2+ε
)L
(
1− e−bLε+c

)(L2−L)/2
.

Observe that

(1− e−aL2+ε
)L = eL ln(1−e−aL2+ε

) = e
− L

eaL
2+ε

ln(1−e−aL
2+ε

)

−e−aL2+ε → 1 as L→∞,

and similarly (
1− e−bLε+c

)(L2−L)/2 → 1 as L→∞.
Hence the proof of Theorem 5.8 is complete once we have shown (5.40) for t = 0, . . . , L−1.
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In the first step we show how the levels w∗t influence πt. We abbreviate the event
[wm � w∗m,m = 0, . . . , t − 1] by Wt, W0 indicating the empty condition. Let αt :=
1
2(1− 1

L)t+1, t = 0, . . . , L− 1 and α−1 := 1
2 . Conditioned on Wt,

πt(i) ≥
{

1− (1− ρ)t−i+1 for 1 ≤ i ≤ t
αt−1 for t < i ≤ L (5.41)

for t = 0, . . . , L− 1. The proof is by induction on t using the basic recursion (4.21) and
the property

wm(i) = 1 for all m = i− 1, i, . . . , t− 1 if i ≤ t,
wm(i) ≥ αm for all m = 0, 1, . . . , t− 1 if i > t,

which follows from the definition of w∗t under Wt, see Table 5.1 below. Let vt+1 =

i 1 2 · · · i · · · t t+ 1 · · · L

π0
1
2

1
2 · · · 1

2 . . . 1
2

1
2 · · · 1

2
w∗0 1 α0 α0 · · · α0 · · · α0

w∗1 1 1 α1 · · · α1 · · · α1
...

...
. . .

...
w∗i−1 1 1 · · · 1 αi−1 · · · αi−1 · · · αi−1

...
...

...
...

. . . · · · ...
w∗t−1 1 1 · · · 1 · · · 1 αt−1 · · · αt−1

w∗t 1 1 · · · 1 · · · 1 1 αt · · · αt

Table 5.1: The levels w∗t for the empirical distributions

P
[
X

(n)
t (1) = · · · = X

(n)
t (t + 1) = 1 | Wt

]
be the probability to sample a solution that

has t+ 1 leading 1s, then from (5.41) we obtain

vt+1 =
t+1∏
i=1

πt(i) ≥ αt−1

t∏
i=1

(
1− (1− ρ)t−i+1

)
≥ αL−1

∞∏
i=1

(
1− (1− ρ)t−i+1

)
≥ 1

3e

∞∏
m=1

(
1− (1− ρ)m

)
=: κ(ρ)

(5.42)

for L large enough as then αt ≥ 1/(3e).
Now we want to determine simple conditions on Xt that imply w(Xt) � w∗t . To do

so, we look at the matrix Xt columnwise observing the independence of its entries.
Let M (t+1) be the number of rows with at least t + 1 leading 1s, then M (t+1) ≥ Nb

implies wt(i) = 1, i = 1, . . . , t + 1. These M (t+1) rows must be the first rows in X
[·]
t .
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Next, the number of 1s in column i = t+ 2 on these rows

Y (i) :=

M(i−1)∑
n=1

X
[n]
t (i) ≥ αtNb (5.43)

implies wt(i) ≥ αt. Here we have to restrict the number of rows to the present ‘candidate’
rows 1, . . . ,M (i−1) from which the set N b

t is selected. After looking at column i in this
way, we define

M (i) := max{Nb, Y
(i)} (5.44)

as the updated number of present candiates for N b
t , and repeat (5.43), (5.44) for i =

t+ 3, . . . , L. We then obtain

P
[
wt � w∗t |Wt

]
(5.45)

≥ P
[
M (t+1) ≥ Nb, Y

(i) ≥ αtNb, i = t+ 2, . . . , L |Wt

]
= P

[
M (t+1) ≥ Nb |Wt

]
·

L∏
i=t+2

P
[
Y (i) ≥ αtNb

| Y (l) ≥ αtNb, l = t+ 2, . . . , i− 1,M (t+1) ≥ Nb,Wt

]
To derive the desired lower bounds for these expressions we need the Chernoff bound
(see e.g. [RP95] Theorem 4.2 p. 70) in the following form: let Z1, . . . , Zm be i.i.d.
0-1-distributed with success probability p then for any 0 < r < mp we have

P
( m∑
i=1

Zi ≤ r
)
≤ e−

1
2

(1− r
mp

)2mp
. (5.46)

Conditioned on Wt, M
(t+1) is distributed as the number of successes in a row of N i.i.d.

experiments, each with success probability p := vt+1. We obtain for β < κ(ρ) ≤ vt+1

that Nb = bβNc ≤ βN < vt+1N . Hence for t = 0, . . . , L− 1

P
[
M (t+1) ≥ Nb |Wt

]
= 1−P

[
M (t+1) < Nb |Wt

]
≥ 1−P

[
M (t+1) <

β

vt+1
vt+1N |Wt

]
(5.47)

≥ 1− e−
1
2

(1− β
κ(ρ)

)2κ(ρ)N
,

where we used (5.46). Hence, in (5.40) we may define a := 1
2(1 − β

κ(ρ))2κ(ρ). Similarly,

Y (t+2) is distributed as the number of 1s in M (t+1) i.i.d. trials each with success prob-
ability πt(t + 2). From (5.41) and the definition of αt we see that under the condition
used in (5.45) we have πt(t+2)M (t+1) ≥ αt−1M

(t+1) > αtNb. Using the Chernoff bound
we therefore obtain for L large enough

P
[
Y (t+2) ≥ αtNb |Wt,M

(t+1) ≥ Nb

]
= 1−P

[
Y (t+2) < αtNb |Wt,M

(t+1) ≥ Nb

]
≥ 1−E

[
e
− 1

2
(1− αtNb

πt(t+2)M(t+1)
)2πt(t+2)M(t+1)

|Wt,M
(t+1) ≥ Nb

]
≥ 1− e−

1
2

(1− αt
αt−1

)2
Nb
3e = 1− e−

Nb
6eL2 ≥ 1− e−

βN−1

6eL2 (5.48)
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where we used αt
αt−1

= 1 − 1
L . A completely analogous derivation holds for the other

factors in (5.45) with i = t+ 3, . . . , L. Hence, with b := β
6e , c := 1

6e , we see from (5.48),
(5.47) and (5.45) that (5.40) holds for L large enough.

Theorem 5.7 c) and (5.34) show that a constant learning rate reduces the global
‘exploration’ of the search space S. However, Theorem 5.8 shows that we can compensate
for that by increasing the local ‘exploitation’ in terms of a growing sample size, at least
in specific problems. A different example of such a balance shall be given in Theorem
6.8 in Chapter 6.

5.4.3 Runtime results for restricted models

The studies in [CTCY10] and [WK14b] complement those in [NW06], [NW09], [DNSW07],
[DJ07] and [Gut08] who considered a theoretical MBS algorithm with restricted models
on OneMax and LeadingOne. The MBS algorithm they considered is 1-ANT. Generally,
1-ANT samples only one solution in each iteration, and update the models similarly as
MMAS, i.e. for all a ∈ A = {0, 1} and i = 1, . . . , L,

Πt+1(a; i) :=


Πt(a; i) if f(st) > f(XBF

t−1),

min
{
Πt(a; i)(1− ρ) + ρ, pmax

}
if f(st) ≤ f(XBF

t−1) and st(i) = 1,

max
{
Πt(a; i)(1− ρ), pmin

}
if f(st) ≤ f(XBF

t−1) and st(i) = 0,

where st =
(
st(1), . . . , st(L)

)
∈ S = {0, 1}L is the random solution sampled in iteration

t, XBF
t−1 is the best solution found within iterations 0, 2, . . . , t − 1, ρ ∈ (0, 1) is a fixed

constant learning rate, pmin, pmax ∈ (0, 1) are fixed bounds for restricting the models,
and f is the cost function defined as in (5.36) or (5.37).

In the literature, it is common to set pmin = 1
L and pmax = 1 − 1

L . In [NW06] and
[NW09], F. Neumann et al showed that when ρ ≥ 1

L1−ε for some ε ∈ (0, 1), the runtime
of 1-ANT on OneMax problem is O(L2) with a probability approaching to 1 rapidly
as L → ∞; and when ρ ≤ 1

L1+ε for some ε > 0, the runtime of 1-ANT on OneMax is
exponentially also with a probability approaching to 1. [DNSW07] and [DJ07] continued
the studies in [NW06] and [NW09] for the case that ρ is in the critical window [ 1

L1+ε ,
1

L1−ε ].
Particularly, for the case ρ ≤ 1/(L logL), [DNSW07] and [DJ07] showed that 1-ANT are
rather inefficient on both LeadingOne and OneMax i.e. the runtime can not be bounded
above by any polynomial. In [Gut08], W. J. Gutjahr showed that for the case ρ ≥ 1− 1

L ,
the expected runtime of 1-ANT on OneMax is O(L logL). Summarily, those literatures
show that for a big constant learning rate ρ ∈ (0, 1), we may find an optimal solution
efficiently if we reward models only with best solution found so far and employ lower
and upper bounds to restrict models.

Theorem 5.9 below continues the studies in [NW06], [NW09], [DNSW07], [DJ07] and
[Gut08]. It essentially states that in the case of ρt ≡ ρ > 1 − 1

L and M= NM (i.e.
Mt ≡ ∅, reward models with present solutions), if we also employ restricted models,
then, with an overwhelming probability, the runtime of the framework on OneMax is
O(L2+ε) for some ε ∈ (0, 1). Therefore, update of models only with best solution found
so far is not so crucial in efficiently finding an optimal solution.
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Theorem 5.9. Let M = NM (non-memory), S = TS (truncate selection), L = UL
(uniform learning), A = {0, 1} and Π0 uniform on S = AL. We use unconstrained non-
greedy feasibility construction, and employ a lower bound pmin in the update of models
i.e. for all t ≥ N after applying the basic recursion (4.21) , we reset Πt+1(a; i) = pmin
and Πt+1(1−a; i) = 1−pmin for all a ∈ A and i = 1, . . . , L with Πt+1(a; i) < pmin := 1

L .
Then if ρt ≡ ρ ≥ 1− 1

L , N = L1+ε for an arbitrarily fixed ε > 0 and Nb = 1, the runtime

of the framework on OneMax is O(L2+ε) with a probability bigger than 1− o(βLε/2) for
some constant β ∈ (0, 1).

Proof. Let XIT
t =

(
XIT
t (1), . . . ,XIT

t (L)
)
∈ S = {0, 1}L be the best solution in iteration

t. Note that we do not use memory here and S = TS with Nb = 1, the empirical distri-
bution Wt would be learned from XIT

t only. Note also that we consider unconstrained
non-greedy feasibility construction here i.e.

Q(a; y, i+1,Πt) = Πt(a; i+1) for all a ∈ {0, 1}, i = 0, 1, . . . , L−1, y ∈ Ri−1 and t ∈ N.

We first show two facts which would be rather involved in the proof of the Theorem.

Claim 5.10. Under the assumption of Theorem 5.9, we have

Πt+1(a; i) =

{
1− 1

L if a = XIT
t (i),

1
L if a = 1−XIT

t (i),
for all t ∈ N, a ∈ {0, 1}, i = 1, . . . , L.

Proof of Claim 5.10. Now arbitrarily fix t ∈ N, i = 1, . . . , L. Since L = UL,

Wt

(
XIT
t (i); i

)
= 1 and Wt

(
1−XIT

t (i); i
)

= 0.

Then by the basic recursion (4.21) and ρ ≥ 1− 1
L , we have, for a = 1−XIT

t (i)

Πt+1

(
a; i
)

= (1− ρ)Πt(; i) + ρWt(a; i)

= (1− ρ)Πt(a; i) ≤ (1− ρ) ≤ 1
L = pmin.

Since we also employ the lower bound pmin = 1
L to adjust the model after applying basic

recursion (4.21), we can conclude that

Πt+1(a; i) =

{
1− 1

L if a = XIT
t (i),

1
L if a = 1−XIT

t (i).

Claim 5.11. Under the assumption of Theorem 5.9, we have that for any l > 0

P
[
f(XIT

t+1) ≤ l − 1
∣∣ f(XIT

t ) = l
]
≥ 1−

[
1− 1

L

(
1− 1

L

)L−1
]L1+ε

> 0,

where f is the cost function of OneMax, see (5.36).
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Proof of Claim 5.11. Let δ := {i | XIT
t (i) = 1, i = 1, . . . , L} ⊆ {1, 2, 3, . . . , L}. Then by

Claim 5.10, we have

Πt+1(a; i) =


1− 1

L if i ∈ δ, a = 1,
1
L if i ∈ δ, a = 0,

1− 1
L if i /∈ δ, a = 0,

1
L if i /∈ δ, a = 1.

(5.49)

Let l > 0 be arbitrarily fixed. Conditioned on [f(XIT
t ) = l], we have δ 6= {1, 2, . . . , L}

and |δ| = L− l.
Observe that [f(XIT

t+1) ≤ l − 1] is implied by event

[ ∃n = 1, . . . , N : ∀i ∈ δ X
(n)
t+1(i) = 1 and ∃1 j ∈ {1, . . . , L} − δ X

(n)
t+1(j) = 1 ],

where notation ∃1 means “exists exact one”, and recall that X
(n)
t is the n-th random

solution sampled from Πt+1 and X
(n)
t (i) indicates the i-th position of X

(n)
t . We are to

show a lower bound for the probability of this event conditioned on [f(XIT
t ) = l].

Note that for any fixed n ∈ {1, . . . , N}, by (5.49) we have

P
[
∀i ∈ δ X

(n)
t+1(i) = 1 and ∃1 j ∈ {1, . . . , L} − δ X

(n)
t+1(j) = 1

∣∣ f(XIT
t ) = l

]
(5.50)

= E
[(

1− 1

L

)L−l · ( l
1

)
1

L

(
1− 1

L

)l−1
∣∣∣ f(XIT

t ) = l
]

≥ 1

L

(
1− 1

L

)L−1
,

where, observe the fact that positions are independent of each other.

Note that X
(1)
t+1, . . . ,X

(N)
t+1 are i.i.d. By (5.50), we have

P
[
∃n = 1, . . . , N : ∀i ∈ δ X

(n)
t+1(i) = 1 and ∃1 j ∈ {1, . . . , L} − δ X

(n)
t+1(j) = 1

∣∣f(XIT
t ) = l

]
= 1−

[
1−P

[
∀i ∈ δ X

(1)
t+1(i) = 1 and ∃1 j ∈ {1, . . . , L} − δ X

(1)
t+1(j) = 1

∣∣f(XIT
t ) = l

]]N
≥ 1−

[
1− 1

L

(
1− 1

L

)L−1
]N

= 1−
[
1− 1

L

(
1− 1

L

)L−1
]L1+ε

> 0.

As a result, we have

P
[
f(XIT

t+1) ≤ l − 1
∣∣ f(XIT

t ) = l
]
≥ 1−

[
1− 1

L

(
1− 1

L

)L−1
]L1+ε

> 0.

Now, we return to the proof of Theorem 5.9. By Claim 5.11, we first show a lower
bound of the probability for event [τ ≤ L], see (5.1) for a definition of τ. Obviously,

[ ∀L− 1 ≥ t ≥ 0 f(XIT
t ) ≤ L− t− 1 ]
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implies [τ ≤ L]. Note that

P
[
∀L− 1 ≥ t ≤ 0 f(XIT

t ) ≤ L− t− 1
]

(5.51)

= P
[
f(XIT

0 ) ≤ L− 1
] L−1∏
t=1

P
[
f(XIT

t ) ≤ L− t− 1
∣∣∣ ∀t− 1 ≥ m ≥ 0 (5.52)

f(XIT
m ) ≤ L−m− 1

]
= P

[
f(XIT

0 ) ≤ L− 1
] L−1∏
t=1

P
[
f(XIT

t ) ≤ L− t− 1
∣∣∣ f(XIT

t−1) ≤ L− t
]
.

Note that the first factor in (5.51) is

P
[
f(XIT

0 ) ≤ L− 1
]

= 1− 2−L·N = 1− 2−L
2+ε
, (5.53)

because Π0 is uniform on {0, 1}L. Each factor in the finite products in (5.51) can be
further written as

P
[
f(XIT

t ) ≤ L− t− 1
∣∣∣ f(XIT

t−1) ≤ L− t
]

(5.54)

= P
[
f(XIT

t ) ≤ L− t− 1
∣∣∣ 0 < f(XIT

t−1) ≤ L− t
]

·P
[
0 < f(XIT

t−1) ≤ L− t
∣∣∣ f(XIT

t−1) ≤ L− t
]

+ P
[
f(XIT

t ) ≤ L− t− 1
∣∣∣ f(XIT

t−1) = 0
]
P
[
f(XIT

t−1) = 0
∣∣∣ f(XIT

t−1) ≤ L− t
]
.

By Claim 5.11, we have

P
[
f(XIT

t ) ≤ L− t− 1
∣∣∣ 0 < f(XIT

t−1) ≤ L− t
]
≥ 1−

[
1− 1

L

(
1− 1

L

)L−1
]L1+ε

≥ 1−
[
1− 1

L

(
1− 1

L

)L]L1+ε

.

Conditioned on f(sbt−1) = 0, we have by (5.49) that

Πt(1; i) = 1− 1

L
for all i = 1, . . . , L.

Therefore

P
[
f(XIT

t ) ≤ L− t− 1
∣∣∣ f(XIT

t−1) = 0
]
≥ P

[
f(XIT

t ) = 0
∣∣∣ f(XIT

t−1) = 0
]

≥ 1−
[
1−

(
1− 1

L

)L]L1+ε

≥ 1−
[
1− 1

L

(
1− 1

L

)L]L1+ε

.

Consequently, by (5.54)

P
[
f(XIT

t ) ≤ L− t− 1
∣∣∣ f(XIT

t−1) ≤ L− t
]
≥ 1−

[
1− 1

L

(
1− 1

L

)L]L1+ε

. (5.55)
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Then by (5.51), (5.53) and (5.55), we have

P
[
∀L− 1 ≥ t ≤ 0 f(XIT

t ) ≤ L− t− 1
]
≥
[
1− 2−L

2+ε
][

1−
[
1− 1

L

(
1− 1

L

)L]L1+ε
]L
.

This in turn implies

P
[
τ ≤ L

]
≥
[
1− 2−L

2+ε
][

1−
[
1− 1

L

(
1− 1

L

)L]L1+ε
]L
.

As L large enough we have (
1− 1

L

)L ≥ 1
2e
−1,

in turn

1−
[
1− 1

L

(
1− 1

L

)L]L1+ε

≥ 1−
[
1− e−1

2 · L
]L1+ε

= 1−
([

1− e−1

2 · L
]L)Lε

.

Since [
1− e−1

2 · L
]L
→ e−

e−1

2 < 1 as L→∞,
there exists β ∈ (0, 1) such that[

1− e−1

2 · L
]L
≤ β < 1 for L large enough.

Therefore, we have

1−
[
1− 1

L

(
1− 1

L

)L]L1+ε

≥ 1− βLε for L large enough.

Consequently, for L large enough we have

P
[
∀L− 1 ≥ t ≤ 0 f(XIT

t ) ≤ L− t− 1
]
≥
[
1− 2−L

2+ε
][

1− βLε
]L

=
[
1− 2−L

2+ε
]
· eLln(1−βLε )

=
[
1− 2−L

2+ε
]
· e−Lβ

Lε ln(1−βL
ε
)

−βLε ≥
[
1− 2−L

2+ε
]
· e−Lβ

Lε

2

=
[
1− 2−L

2+ε
]
·
[
1−

(
1− e−Lβ

Lε

2
)]

≥
[
1− 2−L

2+ε
]
·
[
1− LβL

ε

2

]
= 1− LβL

ε

2 − 2−L
2+ε

+−2−L
2+ε LβL

ε

2 = 1− o(βLε/2).

Where we use the facts that

ln(1− βLε)
−βLε → 1 as L→∞,

1− e−x ≤ x for all x ≥ 0, and LβL
ε → 0 as L→∞.
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From Theorem 5.8 and 5.9, we know that in the case of a constant learning rate, the
key point for reaching an optimal solution quickly is neither to use the best solution
in the history to update models, nor to employ a big learning rate. The key point is
how to reasonably compensate global exploitation during the search progress. These two
Theorems may inspire us that we can compensate global exploration by adapting sample
size to the problem size or employing a suitable lower bound to restrict the models.

5.4. SOME RUNTIME ANALYSIS RESULTS 96



6 Analysis of model-based search II:
absorption of solutions and models

In Chapter 5, we proposed conditions which guarantee finite reachability, and conditions
which imply a stochastically polynomial runtime. In particular, we see that the popular
setting ρt ≡ ρ > 0 can not guarantee finite reachability i.e. P[τ < ∞] < 1, but it
may make the framework efficiently reach an optimal solution with a very high prob-
ability (see Theorems 5.8-5.9). To understand this ‘peculiar’ phenomenon, we need to
inspect the underlying stochastic process more closely, especially the sampling process(
Xt

)
t=0,1,2,...

and models process
(
Πt

)
t=0,1,2,...

. We want to see what happens to the
sampling process in the case ρt ≡ ρ > 0.

In Section 6.2, we shall show that in the more general case ρt > ρ > 0 for each t ≥ 1,
the sampling process almost surely absorbs to a state1 consisting of an identical solution
s<∞ in finitely many iterations (i.e. absorption of solutions, see Theorem 6.1). This
means that when we set ρt > ρ > 0 for each t ≥ 1, the sampling of the framework can
preserve randomness only in finitely many iterations, after that the sampling becomes
deterministic and always produces the same solution s<∞. We shall show also that
absorption of solutions actually implies P[τ < ∞] < 1 (see Theorem 6.4). This further
explains why we can not guarantee to reach an optimal solution in the case ρt ≡ ρ > 0.
Moreover, we find that when absorption of solutions holds, the absorbing solution s<∞ is
generally a best solution (iteration best or best so far) in the search history (see Theorem
6.3). Recall that the framework learns the empirical models from some selected ‘best’
solutions. This finding actually shows that with the basic recursion to update models, the
next model may effectively catch the good properties in the selected solutions. Actually,
absorption of solutions is not a particular property for MBS algorithms. It may also occur
in other heuristic search procedures. For example, the famous ‘genetic drift’ [AM94] in
genetic algorithms which describes loss of all variation in solutions.

The intrinsic difference of MBS algorithms with SBS algorithms (i.e. solution-based
search algorithms) is that it optimizes models instead of solutions. The asymptotic
behavior of the models process

(
Πt

)
t=0,1,2,...

is therefore of great importance for MBS. We
inspect the models process in Section 6.3. We will show that when absorption of solutions
holds, the models also converge to a limit which concentrates on a single solution s∞
(i.e. absorption of models, see Theorem 6.5). In particular, when the memories record
only some best solutions seen in history, the limiting model may concentrate exactly on
an optimal solution (see Theorem 6.6 and Theorem 6.7). However, we are not able to
show this for the non-memory case. But, in our former work [WK14b], we have known

1Recall that the state space of the sampling process is SN (N is the sample size), therefore a state is
a vector containing N feasible solutions.
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that absorption of models and finite reachability are compatible in the non-memory case
(see also Theorem 6.8).

The whole Chapter is arranged as: Section 6.1 formally defines the absorption of
solutions and absorption of models, then list some additional assumptions; Section 6.2
concentrates on absorption of solutions; Section 6.3 concentrates on absorption of models.

6.1 Definitions and some additional assumptions

This Section shall formally define the two limiting behaviors: absorption of solutions
and absorption of models. The proofs in this Chapter may involve some mathematic
properties of the memory update rule and subsample selection rule. As a mathematic
formalization, we now make some additional assumptions on them. Note that the general
assumptions in Subsection 5.1.2 are also assumed throughout this Chapter.

Recall that the underlying CO instance is (S, f, 0) with S ⊆ AL for some alphabet A
and strings length L ∈ N. The models are restricted to P = Pce, and we use the feasibility
construction to generate random solutions.

6.1.1 Definitions

Mathematically, we say that absorption of solutions holds in an algorithm if and only if

P
[
∃s ∈ S ∃T ∈ N ∀t ≥ T Xt = (s, . . . , s)

]
= 1. (6.1)

Obviously, absorption of solutions means that the sample process (Xt)t∈N will be almost
surely frozen at a single solution after finitely many iterations. Note that in absorption
of solutions, the algorithm may gradually narrow its search range on S and eventually
keep eyes only on a particular solution. Hence, absorption of solutions may also mean
a strong local exploitation. Thereby, for the sake of efficiency, absorption of solutions
may be strongly preferred in practice if finite reachability can also be guaranteed. In
the sequel, we shall write s<∞ as the absorbing solution provided it exists.

We say that an MBS algorithm possesses absorption of models if and only if

P
[
∃s ∈ S ∃Π∞ ∈P ∀a ∈ A ∀i = 1, . . . , L (6.2)

Π∞(s) = 1 and lim
t→∞

Πt(a; i) = Π∞(a; i)
]

= 1.

Absorption of models means that the algorithm would gradually concentrate on a par-
ticular solution probabilistically. In the sequel, we shall denote the limit of the models
by Π∞ ∈ P and the finally concentrated solution by s∞ ∈ S if they do exist.

6.1.2 Some additional assumptions

Let XITM
t be the best solution in Xt∪Mt, and XIT

t be the iteration best solution in Xt.
Obviously, f(XITM

t ) ≤ f(XIT
t ). In the non-memory case, XIT

t = XITM
t (i.e. Mt ≡ ∅).

And if we use global memory update, XITM
t = XBF

t where recall that XBF
t is the best

solution found among iterations t = 0, 1, 2, . . . , t.
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Recall that three commonly used memory update rules are NM (non memory i.e.
Mt ≡ ∅), GTMU (global truncate memory update, we take M best solutions in Mt∪Xt

as the next memory Mt+1, see also (4.14)) and LTMU (local truncate memory update,
we remove a number of solutions in Mt first and form Mt+1 with the resulting Mt by
adding the same number of best solutions in Xt, see also (4.15)). With NM and GTMU
to update memory, we assume that

P
[
XITM
t ∈ N b

t

]
≥ γ1 (6.3)

for some constant γ1 ∈ (0, 1] independent of the contents in Mt ∪Xt, where P
[
XITM
t ∈

N b
t

]
is the probability for the event that the best solution XITM

t in Xt∪Mt is chosen to
the subsample N b

t in iteration t. Therefore, (6.3) actually assumes a time-independent
probability lower bound for taking the best solution in Xt ∪Mt into N b

t .
Recall that commonly used subsample selection rules are ID (identity selection, N b

t =
Xt), TS (truncate selection see p. 60, we take Nb best solutions in Mt ∪Xt as N b

t ), RS
(random selection, we choose solutions with a distribution based on solutions qualities,
see also (4.16)), MRS (memory random selection, random selection in the memory, see
also (4.17)) and MID (memory identity selection, N b

t = Mt+1). With ID or TS as the
selection rule, we can set γ1 = 1, since XITM

t must be in N b
t in these two cases.

In other cases, assumption (6.3) is also reasonable. Note that if we do not use memory
i.e. M = NM, the subsample selection rules are generally ID, TS and RS. In the case
of M = NM and S = RS, due to finiteness of the state space SN of the samples and
positiveness of the weight function g in (4.16), we can set

γ1 := min
{

P
[
s ∈ N b

t

∣∣ s ∈ Xt ∪Mt = x
] ∣∣∣ x ∈ SN+M , s ∈ x

}
> 0,

where N is the sample size, M is the memory size which equals 0 here, P
[
s ∈ N b

t

∣∣ s ∈
Xt = x

]
is defined as in (4.16) which is always positive under RS. For the case of

M =GTMU, we can set γ1 in a completely identical manner, where observe that XITM
t ∈

Mt+1 always holds under GTMU.
In the case of M = LTMU, memory is maintained by an out rule. Recall that the

two most popular out rules are WO (worst out) and FIFO (first in first out). With WO,
we kick out a fix number of worst solutions from the memory. Note that in LTMU with
WO, assumption (6.3) also holds because XITM

t must be taken into the next memory
Mt+1. Comparatively, in LTMU with FIFO, XITM

t may be not in Mt+1, but XIT
t always

enters Mt+1. And in this case, we can assume that

P
[
XIT
t ∈ N b

t

]
≥ γ2 (6.4)

for a constant γ2 ∈ (0, 1] also independent of the contents in Mt ∪Xt. Practically, we
often combine LTMU with RS or ID selection, e.g. PBAS (FIFO+ID or WO+ID) and
MMAS (WO+RS). A similar discussion as in the case of NM and GTMU, we can see
that assumption (6.4) is also reasonable.
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6.2 Absorption of solutions in model-based search

In genetic algorithms, the phenomenon of genetic drift is well-known, see e.g.[AM94].
It describes the loss of all variation in the produced solutions by a crossover. Genetic
drift may result in a premature stagnation i.e. the qualities of solutions stop improving
before seeing an optimal solution. In this section, we show that a similar phenomenon
may also happen in MBS. In particular, we show that the marginal process (Xt)t∈N may
be absorbed into a single solution in finitely many iterations, and optimal solutions may
not be seen in this case.

6.2.1 A universal absorption Theorem

Theorem 6.1 below extends a finding in our former work [WK14b] and [WK14a]. In
[WK14b], we showed that absorption of solutions holds in CE and AS for the case of
a constant learning rate. And in [WK14a], we showed that absorption of solutions also
holds if we do not use memory i.e. the case M = NM. In these two work, we employed
a rather complex proof. Here, we shall use a different and much easier proof to show
that absorption of solutions also holds for other memory update rules in the framework.

The Theorem depends on the two additional assumptions (6.3) and (6.4). As we
discussed in Subsection 6.1.2, these assumptions do not impose any restriction on the
underlying memory update and subsample selection. They are actually mathematical
formalizations. Therefore, the Theorem can apply to all MBS algorithms covered by
our framework. So, it is a universal absorption theorem or drift theory for model-based
search.

Theorem 6.1. Assume ρt ≥ ρ > 0 for all t ∈ N and a constant ρ ∈ (0, 1], N ∈ N is a
constant sample size and M ∈ N is a constant memory size. Then the following hold.

a) Assume (6.3) and we do not use memory, then absorption of solutions holds.

b) Assume (6.3) and M = GTMU, then absorption of solutions holds.

c) Assume (6.3) and M = LTMU with WO, then absorption of solutions holds.

d) Assume (6.4) and M = LTMU with FIFO, then absorption of solutions holds

Proof. By definition (6.1), absorption of solutions means

P
[
exists s ∈ S exists T ∈ N for all t ≥ T Xt = (s, . . . , s)

]
= 1.

Let M1 := min{t ∈ N | ∃s, s′ ∈ Xt ∪Xt+1 s 6= s′}. For each k > 1, let Mk := min{t >
Mk−1 | ∃s, s′ ∈ Xt∪Xt+1 s 6= s′}. Here, we use a convention that min ∅ =∞. Obviously
Mk ≥ k − 1 and

Mk+1 <∞ ⇒ Mk <∞ for all k ≥ 1.

Let d = 1, 2, . . . be an arbitrarily fixed integer. For any T ∈ N and s ∈ S, the event
[ for all t ≥ T Xt = (s, . . . , s)] implies [Md·(T+1) = ∞]. So, absorption of solutions
implies that for any integer d = 1, 2, 3, . . . ,

P
[
exists k ≥ 1 Md·k =∞

]
= 1. (6.5)
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Note that if (6.5) holds, then almost surely that

for all t ≥Md·k0−1 + 1, s, s′ ∈ Xt ∪Xt+1 s = s′ (6.6)

where k0 := min{k ∈ N | Md·k = ∞}. Obviously, event (6.6) implies [exists s ∈
S exists T ∈ N for all t ≥ T Xt = (s, . . . , s)]. Hence (6.5) again implies absorption of
solutions. Therefore, absorption of solutions is equivalent to (6.5), for any d = 1, 2, . . . .

Now, to prove absorption of solutions under different memory update rules, we just
need to show (6.5) holds resp., for some constant d ≥ 1. To achieve this, we first show
a Lemma below which states an achievable sufficient condition for (6.5).

Lemma 6.2. Given a constant integer d ≥ 1. If there exists a constant κ ∈ (0, 1] such
that for any k ≥ 1 and any m ≥ d · k − 1

P
[
Md·(k+1) =∞

∣∣ Md·k = m <∞
]
≥ κ > 0, (6.7)

then (6.5) holds.

Proof. Note that

P
[
∀k ≥ 1 Md·k <∞

]
= P[Md <∞]

∞∏
k=1

P
[
Md·(k+1) <∞

∣∣ Md·l <∞, ∀1 ≤ l ≤ k
]

= P[Md <∞]
∞∏
k=1

P
[
Md·(k+1) <∞

∣∣ Md·k <∞
]

= P[Md <∞]
∞∏
k=1

[
1−P

[
Md·(k+1) =∞

∣∣ Md·k <∞
]]

where we use the fact that

Md·k1 <∞⇒Md·k2 <∞, if k1 > k2.

Note also that

P
[
Md·(k+1) =∞

∣∣ Md·k <∞
]

=
∑

m≥d·k−1

P
[
Md·(k+1) =∞

∣∣ Md·k = m <∞
]
P
[
Md·k = m

∣∣ Md·k <∞
]

and ∑
m≥d·k−1

P
[
Md·k = m

∣∣ Md·k <∞
]

= 1.

Therefore, with assumption (6.7) we have

P
[
Md·(k+1) =∞

∣∣ Md·k <∞
]
≥ κ > 0 for all k ≥ 1.

Which in turn implies P
[
∀k ≥ 1 Md·k <∞

]
= 0 and (6.5).
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Now, we show (6.5) through proving (6.7) under different memory update rules which
in turn implies statements a)-d).

a) (see [WK14a] for an alternative proof) Assume (6.3) and Mt ≡ ∅. To prove (6.7),
we take d = 2 and arbitrarily fix a k ≥ 1 and an m ≥ 2k− 1. Now, we are going to look
for a lower bound κ > 0 for (6.7).

Note that the random event

[∀t ≥ m+ 2 Xt = (XITM
m+1 , . . . ,X

ITM
m+1 )]

implies [M2k+2 = ∞] conditioned on [M2k = m < ∞], where recall that XITM
m+1 is the

best solution in Xm+1 ∪Mm+1 and it coincides with XIT
m+1 since Mm+1 = ∅ here. So,

we have

P
[
M2·(k+1) =∞

∣∣ M2·k = m <∞
]

≥ P
[
∀t ≥ m+ 2 Xt = (XITM

m+1 , . . . ,X
ITM
m+1 )

∣∣ M2·k = m <∞
]
.

Hence, to show (6.7), we just need to find a positive lower bound κ for

P
[
∀t ≥ m+ 2 Xt = (XITM

m+1 , . . . ,X
ITM
m+1 )

∣∣ M2·k = m <∞
]
.

Now we abbreviate [Xt = (XITM
m+1 , . . . ,X

ITM
m+1 )] as [Xt ≡ XITM

m+1 ]. Then

P
[
∀t ≥m+ 2 Xt = (XITM

m+1 , . . . ,X
ITM
m+1 )

∣∣ M2·k = m <∞
]

(6.8)

= P
[
∀t ≥ m+ 2 Xt ≡ XITM

m+1

∣∣ M2·k = m <∞
]

= P
[
Xm+2 ≡ XITM

m+1

∣∣ M2·k = m <∞
] ∞∏
t=m+3

P
[
Xt ≡ XITM

m+1∣∣ M2·k = m <∞,∀t− 1 ≥ l ≥ m+ 2 Xl ≡ XITM
m+1

]
.

By assumption (6.3), we know that

P[XITM
m+1 ∈ N b

m+1] > γ1 > 0.

Since γ1 is independent of the contents in the sample, by the general assumption of
learning rule (5.8) and (5.10), we have

P
[
∀L ≥ i ≥ 1 Wm+1

(
XITM
m+1 (i); i

)
≥ α

∣∣ M2·k = m <∞
]

= P
[
∀L ≥ i ≥ 1 Wm+1

(
XITM
m+1 (i); i

)
≥ α

∣∣ XITM
m+1 ∈ N b

m+1,M2·k = m <∞
]

·P
[
XITM
m+1 ∈ N b

m+1

∣∣ M2·k = m <∞
]

= P
[
XITM
m+1 ∈ N b

m+1

∣∣ M2·k = m <∞
]
≥ γ1 > 0 (6.9)

where we write XITM
m+1 as

(
XITM
m+1 (1), . . . ,XITM

m+1 (L)
)
. Then by (6.9), the first factor in

(6.8) can be written as

P
[
Xm+2 ≡ XITM

m+1

∣∣ M2·k = m <∞
]

(6.10)

= P
[
Xm+2 ≡ XITM

m+1

∣∣ M2·k = m <∞,∀L ≥ i ≥ 1 Wm+1

(
XITM
m+1 (i); i

)
≥ α

]
·P
[
∀L ≥ i ≥ 1 Wm+1

(
XITM
m+1 (i); i

)
≥ α

∣∣ M2·k = m <∞
]

≥ γ1 ·P
[
Xm+2 ≡ XITM

m+1

∣∣ M2·k = m <∞,∀L ≥ i ≥ 1 Wm+1

(
XITM
m+1 (i); i

)
≥ α

]
.
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Note that

P
[
Xm+2 ≡ XITM

m+1

∣∣ M2·k = m <∞, ∀L ≥ i ≥ 1 Wm+1

(
XITM
m+1 (i); i

)
≥ α

]
(6.11)

= E
[(
Q(XITM

m+1 ; Πm+2)
)N ∣∣∣ M2·k = m <∞,∀L ≥ i ≥ 1 Wm+1

(
XITM
m+1 (i); i

)
≥ α

]
,

and by definition (5.16)

Q(XITM
m+1 ; Πm+2) =

L∏
i=1

Q
(
XITM
m+1 (i); XITM

m+1 |i−1
, i,Πm+2

)
≥

L∏
i=1

Ci−1

(
XITM
m+1 |i−1

; XITM
m+1 (i)

)
Πm+2

(
XITM
m+1 (i); i

)
≥ λL

L∏
i=1

Πm+2

(
XITM
m+1 (i); i

)
,

where λ > 0 is defined in (5.20). By the basic recursion (4.21), have that

Πm+2

(
XITM
m+1 (i); i

)
≥ ρm+2 · α ≥ ρ · α for all i = 1, . . . , L

conditioned on the event

[∀L ≥ i ≥ 1 Wm+1

(
XITM
m+1 (i); i

)
≥ α].

Therefore (6.11) can be bounded as

E
[(
Q(XITM

m+1 ; Πm+2)
)N ∣∣∣ Md·k = m <∞,∀L ≥ i ≥ 1 Wm+1

(
XITM
m+1 (i); i

)
≥ α

]
(6.12)

≥ E
[(
λ · α · ρ

)L·N ∣∣∣ Md·k = m <∞,∀L ≥ i ≥ 1 Wm+1

(
XITM
m+1 (i); i

)
≥ α

]
=
(
λ · α · ρ

)L·N
> 0.

As a result of (6.12) and (6.10), the first factor in (6.8) can be bounded as

P
[
Xm+2 ≡ XITM

m+1

∣∣ Md·k = m <∞
]
≥ γ1 ·

(
λ · α · ρ

)L·N
> 0 (6.13)

which is independent of k and m.
Now we are going to analyze the lower bound for the infinite products in (6.8). Note

that for each t ≥ m + 3, due to the Markov property (4.22) of the underlying process(
Πt,Xt,Mt,N b

t ,Wt

)
t=0,1,2,...

we have

P
[
Xt ≡ XITM

m+1

∣∣ M2·k = m <∞, ∀t− 1 ≥ l ≥ m+ 2 Xl ≡ XITM
m+1

]
= P

[
Xt ≡ XITM

m+1

∣∣ ∀t− 1 ≥ l ≥ m+ 2 Xl ≡ XITM
m+1

]
.
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Since we do not use memory here, conditioned on the event

[∀t− 1 ≥ l ≥ m+ 2 Xl ≡ XITM
m+1 ] (6.14)

we have [
∀t− 1 ≥ l ≥ m+ 2 N b

l =
(
XITM
m+1 , . . . ,X

ITM
m+1

)]
.

By assumption (5.9), we have[
∀t− 1 ≥ l ≥ m+ 2 ∀i = 1, . . . , L Wl

(
XITM
m+1 (i); i

)
= 1
]
.

Consequently (5.23) in Lemma 5.6 holds for y := XITM
m+1 |i−1

and T := m + 2 for all

i = 1, 2, . . . , L. Hence, conditioned on (6.14), we may apply ρl ≥ ρ > 0 and (5.26) of
Lemma 5.6 with w := 1 to get that

Q′
(
XITM
m+1 ; XITM

m+1 |i−1
, i,Πt

)
≥ 1−

(
1−Q′

(
XITM
m+1 ; XITM

m+1 |i−1
, i,Πm+2

)) t∏
l=m+3

(1− ρl)

≥ 1−
(

1−Q′
(
XITM
m+1 ; XITM

m+1 |i−1
, i,Πm+2

)) t∏
l=m+3

(1− ρ)

≥ 1− (1− ρ)t−m−2, (6.15)

for all i = 1, 2, . . . , L. By (6.15) and a) of Lemma 5.5, we have

Q(XITM
m+1 ; Πt) =

L∏
i=1

Q
(
XITM
m+1 ; XITM

m+1 |i−1
, i,Πt

)
≥

L∏
i=1

`
[
Q
(
XITM
m+1 ; XITM

m+1 |i−1
, i,Πt

)]
≥

L∏
i=1

`
[
1− (1− ρ)t−m−2

]
=
[
`
(
1− (1− ρ)t−m−2

)]L
. (6.16)

With (6.16) we can now bound each factor in the infinite products of (6.8) as

P
[
Xt ≡ XITM

m+1

∣∣ M2·k = m <∞, ∀t− 1 ≥ l ≥ m+ 2 Xl ≡ XITM
m+1

]
= E

[
Q(XITM

m+1 ; Πt)
N
∣∣∣ M2·k = m <∞, ∀t− 1 ≥ l ≥ m+ 2 Xl ≡ XITM

m+1

]
≥
[
`
(
1− (1− ρ)t−m−2

)]L·N
. (6.17)
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Combine (6.13) and (6.17), we can bound (6.8) as

P
[
∀t ≥ m+ 2 Xt = (XITM

m+1 , . . . ,X
ITM
m+1 )

∣∣ M2·k = m <∞
]

(6.18)

≥ γ1 ·
(
λ · α · ρ

)L·N · ∞∏
t=m+3

[
`
(
1− (1− ρ)t−m−2

)]L·N
≥ γ1 ·

(
λ · α · ρ

)L·N · [∏
l=1

(
1− ~

(
(1− ρ)l

))]L·N
:= κ > 0.

Where to justify κ > 0, we use the Lemma 5.4 c). Obviously, κ is independent of k and
m. Therefore (6.7) holds for non memory case, so absorption of solutions holds.

b) To show (6.7) holds for GTMU, we take d = M + 1 and arbitrarily fix a k ∈ N
and a m ≥ (M + 1) · k − 1, where recall that M is the size of the memory. The proof is
similar with the proof for a), we just sketch it.

Similar with the non-memory case, we have

P
[
∀t ≥ m+M + 1 Xt ∪Mt = (XITM

m+1 , . . . ,X
ITM
m+1 )

∣∣ Md·k = m <∞
]
≥ κ > 0

implies (6.7).
Note that with GTMU, XITM

m+1 is the best so far solution within iterations 0, 1, . . . ,m+
1. Therefore,

∀m+M + 1 ≥ t ≥ m+ 2 Xt ≡ XITM
m+1

implies
Mm+M+1 ∪Xm+M+1 = (XITM

m+1 , . . . ,X
ITM
m+1 ).

And observe that

P
[
∀t ≥ m+M + 1 Xt ∪Mt = (XITM

m+1 , . . . ,X
ITM
m+1 )

∣∣ Md·k = m <∞
]

(6.19)

= P
[
Mm+M+1 ∪Xm+M+1 ≡ XITM

m+1

∣∣ Md·k = m <∞
] ∞∏
t=m+M+2

P
[
Mt ∪Xt ≡ XITM

m+1

∣∣∣
∀t− 1 ≥ l ≥ m+M + 1 Xl ∪Ml ≡ XITM

m+1 ,Md·k = m <∞
]

where we abbreviate [Xt ∪Mt = (XITM
m+1 , . . . ,X

ITM
m+1 )] as [Xt ∪Mt ≡ XITM

m+1 ].
Note that

P
[
Mm+M+1 ∪Xm+M+1 ≡ XITM

m+1

∣∣ Md·k = m <∞
]

(6.20)

≥ P
[
∀m+M + 1 ≥ t ≥ m+ 2 Xt ≡ XITM

m+1

∣∣ Md·k = m <∞
]

= P
[
Xm+2 ≡ XITM

m+1

∣∣ Md·k = m <∞
]m+M+1∏
l=m+3

P
[
Xl ≡ XITM

m+1

∣∣∣
∀l ≥ l′ ≥ m+ 2 Xl′ ≡ XITM

m+1 ,Md·k = m <∞
]
.

With completely similar steps as (6.9)-(6.13), we have that

P
[
Xm+2 ≡ XITM

m+1

∣∣ Md·k = m <∞
]
≥ γ1 ·

(
λ · α · ρ

)L·N
> 0.
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Conditioned on [
∀l ≥ l′ ≥ m+ 2 Xl′ ≡ XITM

m+1

]
we have

XITM
m+1 = XITM

m+2 = · · · = XITM
m+l .

Then with completely similar steps as (6.9)-(6.13), we can also derive that

P
[
Xl ≡ XITM

m+1

∣∣∣ ∀l ≥ l′ ≥ m+ 2 Xl′ ≡ XITM
m+1 ,Md·k = m <∞

]
≥ γ1 ·

(
λ ·α ·ρ

)L·N
> 0.

Consequently, by (6.20) we have

P
[
Mm+M+1 ∪Xm+M+1 ≡ XITM

m+1

∣∣ Md·k = m <∞
]
≥
[
γ1 ·

(
λ ·α · ρ

)L·N]M
> 0. (6.21)

Note that conditioned on[
∀t− 1 ≥ l ≥ m+M + 1 Xl ∪Ml ≡ XITM

m+1

]
event [Xt ∪Mt ≡ XITM

m+1 ] is equivalent to [Xt ≡ XITM
m+1 ]. Therefore, similar steps as in

(6.14)-(6.17) show that

P
[
Mt ∪Xt ≡ XITM

m+1

∣∣∣ ∀t− 1 ≥ l ≥ m+M + 1 Xl ∪Ml ≡ XITM
m+1 ,Md·k = m <∞

]
≥
[
`
(
1− (1− ρ)t−M−1

)]L·N
. (6.22)

By (6.21) and (6.22), we have

P
[
∀t ≥ m+M + 1 Xt ∪Mt = (XITM

m+1 , . . . ,X
ITM
m+1 )

∣∣ Md·k = m <∞
]

(6.23)

≥
[
γ1 ·

(
λ · α · ρ

)L·N]M · ∞∏
l=1

(
1− ~

(
(1− ρ)l

))]L·N
:= κ > 0

which implies (6.7) for GTMU.
c) Observe that in LTMU with WO, the best solution XITM

t in Mt∪Xt is also always
taken into Mt+1 for each t ∈ N. We can also take d = M+1, and use XITM

m+1 to construct
the lower bound. The proof is completely the same as in b).

d) For this case, we take d = M + 1 also. And for any arbitrarily fixed k and
m ≥ (M + 1)k − 1,

P
[
∀t ≥ m+M + 1 Xt ∪Mt ≡ XIT

m+1

∣∣ Md·k = m <∞
]
≥ κ > 0

implies (6.7), where recall that XIT
m+1 is the best solution in Xm+1.

Similar with (6.19), we have

P
[
∀t ≥ m+M + 1 Xt ∪Mt ≡ XIT

m+1

∣∣ Md·k = m <∞
]

(6.24)

= P
[
Mm+M+1 ∪Xm+M+1 ≡ XIT

m+1

∣∣ Md·k = m <∞
] ∞∏
t=m+M+2

P
[
Mt ∪Xt ≡ XIT

m+1

∣∣∣
∀t− 1 ≥ l ≥ m+M + 1 Xl ∪Ml ≡ XIT

m+1,Md·k = m <∞
]
.
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Observe that with LTMU,

∀m+M + 1 ≥ t ≥ m+ 2 Xt ≡ XIT
m+1

implies
Mm+M+1 ∪Xm+M+1 = (XIT

m+1, . . . ,X
IT
m+1)

since conditioned on

∀m+M + 1 ≥ t ≥ m+ 2 Xt ≡ XIT
m+1

holds
XIT
m+1 = XIT

m+2 = · · · = XIT
m+M+1,

and we use FIFO out rule. With similar steps as (6.9)-(6.13), γ2 instead of γ1 and
assumption (6.4) instead of (6.3), we have that

P
[
Mm+M+1 ∪Xm+M+1 ≡ XIT

m+1

∣∣ Md·k = m <∞
]
≥
[
γ2 ·

(
λ ·α · ρ

)L·N]M
> 0. (6.25)

Similar as in b) or in steps (6.14)-(6.17),

P
[
Mt ∪Xt ≡ XIT

m+1

∣∣∣ ∀t− 1 ≥ l ≥ m+M + 1 Xl ∪Ml ≡ XIT
m+1,Md·k = m <∞

]
≥
[
`
(
1− (1− ρ)t−M−1

)]L·N
. (6.26)

By (6.24), (6.25) and (6.26), we have

P
[
∀t ≥ m+M + 1 Xt ∪Mt ≡ XIT

m+1

∣∣ Md·k = m <∞
]

(6.27)

≥
[
γ2 ·

(
λ · α · ρ

)L·N]M · ∞∏
l=1

(
1− ~

(
(1− ρ)l

))]L·N
:= κ > 0

which implies (6.7) for LTMU with FIFO.

6.2.2 A general method for time inhomogeneous Markov chain

Technically, Theorem 6.1 states that the process Xt absorbs into a state (=sample)
(s, . . . , s) in the finite state space SN almost surely. It extends the well-known results
from time-homogeneous Markov chains as they are used to model drift in simple genetic
algorithms to the inhomogeneous case we are considering here.

Let (Ut)t=0,1,2,... be a Markov chain with state space U . And let Q = {Q(δ) | δ ∈ S} be
a family of statements and S is the index set. Then, we say that the chain (Ut)t=0,1,2,...

satisfies tail property Q if and only if

P
[
∃δ ∈ S ∃T ∈ N ∀t ≥ T Ut |= Q(δ)

]
= 1,

where notation Ut |= Q(δ) means that Ut makes statement Q(δ) hold. Obviously, ab-
sorption of solutions is a particular tail property of the underlying stochastic process(

Πt,Xt,Mt,Nt,Wt

)
t=0,1,2,...

provided we define that
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• Q = {Q(s) | s ∈ S},
•
(
Πt,Xt,Mt,Nt,Wt

)
|= Q(s) if and only if Xt = (s, . . . , s).

The proof of Theorem 6.1 actually presents an idea for proving tail properties of Markov
chains. By Lemma 6.2, to prove

P
[
∃δ ∈ S ∃T ∈ N ∀t ≥ T Ut |= Q(δ)

]
= 1,

it is sufficient to find a constant d ∈ N and a constant κ ∈ (0, 1] such that

P
[
Md·(k+1) =∞

∣∣Md·k = m <∞
]
≥ κ > 0 (6.28)

for all k and m. Where Mk is the k-th t such that

∀δ ∈ S ¬
(
Ut |= Q(δ) and Ut+1 |= Q(δ)

)
.

For a fixed d, to show (6.28) we only need to seek for a suitable δ0 ∈ S such that

P
[
∀t ≥ m+ d Ut |= Q(δ0)

∣∣ Md·k = m <∞
]
≥ κ > 0. (6.29)

And due to the Markov property of the process, it is often easy for us to find a δ0 ∈ S
which shows (6.29). For example, in the proof of Theorem 6.1, we use best solution
XITM
t ∈ Xt ∪Mt as the δ0 for proving absorption of solutions in the cases NM, GTMU

and LTMU with WO, and for the case LTMU with FIFO we select the best solution
XIT
t ∈ Xt as the δ0.
Applying this idea, we may also easily show ‘absorption of solutions’ for heuristic

algorithms of solution-based type. We take GA as an example. As we mentioned in
the beginning of this Section, absorption of solutions are named as genetic drift in GA.
To study genetic drift, we assume conventionally a GA without mutation operator e.g.
[AM94]. Let Pt be the starting population in iteration t. Obviously, (Pt)t=0,1,2,... forms a
Markov chain. Define Q = {Q(s) | s ∈ S} and Pt |= Q(s) if and only if Pt = (s, . . . , s).
Then genetic drift corresponds to tail property Q. Recall that in each iteration of GA,
M/2 pairs of solutions where M is the population size for children, say

St :=
(
(s(1), s(2)), . . . , (s(M−1), s(M))

)
are randomly picked out from the present population Pt with a distribution based on
solutions qualities. Then, each pair produces two children by a fixed crossover operator.
Let Ot be the M children produced by pairs in St. Here, we do not consider mutation. So
the next population Pt+1 is directly selected from Pt ∪Ot either by a truncate selection
(i.e. the so-called λ+µ rule) or a quality-based random selection (i.e. the so-called (λ, µ)
rule). Similarly, due to the finiteness of S, we may assume that there exists a β ∈ (0, 1]
which does not depend on the contents of Pt such that for all t ≥ N,

P
[
St =

(
(XIT

t ,XIT
t ) . . . , (XIT

t ,XIT
t )
) ∣∣ Pt]

= P
[
St =

(
(XIT

t ,XIT
t ) . . . , (XIT

t ,XIT
t )
)]
≥ β > 0,
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where XIT
t is the best solution in Pt. Therefore, if we construct Pt+1 by a truncate

selection, then we can show that

P
[
∀t ≥ m+ 2 Pt |= Q(XIT

m+1)
∣∣ M2·k = m <∞

]
≥ P

[
Sm+1 =

(
(XIT

m+1,X
IT
m+1), . . . , (XIT

m+1,X
IT
m+1)

) ∣∣∣ M2·k = m <∞
]
≥ β > 0,

for any m and k. So, genetic drift holds for GA with truncate selection in population
update. Although the discussion here uses a ‘dirty’ trick, it reflects a truth in fact.
Similar discussion may apply to GA with random selection in the population update.

6.2.3 On the absorbing solution s<∞

In the above, we showed absorption of solutions in the framework for the case of ρt ≥
ρ > 0 under different memory update rules. But we do not get any insight into the
absorbing solution s∞. Now, we are to show some properties for s<∞.

Theorem 6.3 below shows that conditioned on absorption of solutions, the memories
are also absorbed to s<∞. As a result, if we use GTMU or LTMU with WO to update
memory, then s<∞ must be the best solution found. And if we use NM or LTMU with
FIFO to update memory, s<∞ must be an iteration best solution.

Theorem 6.3. Assume that absorption of solutions and (6.3) hold, and we use NM,
GTMU, LTMU with WO or LTMU with FIFO to update memory. Then absorption of
memories also holds almost surely i.e.

∃T ∈ N ∀t ≥ T Mt = (s<∞, . . . , s<∞)

where s<∞ is the solution which the sampling is absorbed to.

Proof. Obviously, if we use NM or LTMU with FIFO, Theorem 6.3 holds. We only need
to prove for the cases of GTMU and LTMU with WO.

We assume that the employed memory update rule is GTMU or LTMU with WO, and

P
[
∀t ≥ T Xt = (s<∞, . . . , s<∞)

]
= 1 (6.30)

for some random time T ∈ N and absorbing solution s<∞ ∈ S. We want to show that

P
[

XITM
T = s<∞

]
= 1, (6.31)

where XITM
T also denotes the best solution in MT ∪XT .

Note that if (6.31) holds, then by (6.30) and assumption (5.7) the Theorem holds. I.e.
by (6.30) and (6.31) we have

P
[
∀t ≥ T Xt = (s<∞, . . . , s<∞), XITM

t = s<∞
]

= 1.

And event [
∀t ≥ T Xt = (s<∞, . . . , s<∞), XITM

T = s<∞
]
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implies that there exists T ′ > T,[
∀t ≥ T ′ Mt = (s<∞, . . . , s<∞)

]
under assumption (5.7), since we use GTMU or LTMU with WO to update memories.

Observe that

P
[
∃t ≥ T Xt 6= (s<∞, . . . , s<∞)

∣∣∣ XITM
T 6= s<∞

]
(6.32)

≥ P
[
XT+1 6= (s<∞, . . . , s<∞)

∣∣∣ XITM
T 6= s<∞

]
≥ P

[
XT+1 = (XITM

T , . . . ,XITM
T )

∣∣∣ XITM
T 6= s<∞

]
≥ γ1 ·

(
λ · α · ρT+1

)L·N
> 0,

where we use assumption (6.3) and (5.10), and the last inequality in (6.32) follows by a
completely analogous discussion as in steps (6.9)-(6.13) in the proof of Theorem 6.1.

By (6.32), we have
P
[
XITM
T 6= s<∞

]
= 0.

Otherwise,

P
[
∃t ≥ T Xt 6= (s<∞, . . . , s<∞)

]
= P

[
∃t ≥ T Xt 6= (s<∞, . . . , s<∞)

∣∣∣ XITM
T 6= s<∞

]
P
[
XITM
T 6= s<∞

]
> 0

which contradicts (6.30). This completes the proof.

By Theorem 6.3, we know that s<∞ must be of a high quality if we compare it
only with solutions seen in the search history. But in optimization, we may be more
interested in whether s<∞ ∈ S∗. Or in other word, whether absorption of solutions and
finite reachability are compatible. Note that finite reachability concerns whether the
framework can reach an optimal solution in finitely many iterations (effectiveness), and
absorption of solutions may be related to the number of possible solutions visited by
the framework (efficiency). Hence, compatibility of absorption of solutions and finite
reachability may reflect a theoretical possibility of perfectly balancing efficiency and
effectiveness.

Obviously, the setting ρt ≥ ρ > 0 conflicts the necessary condition of finite reachability
i.e.

∞∑
t=1

t∏
m=1

(1− ρm) =∞,

see also b) of Theorem 5.7. This means that when absorption of solutions holds, finite
reachability may not be guaranteed. This may give an intuition that finite reachability
and absorption of solutions are incompatible. Theorem 6.4 below confirms this theoret-
ically, at least in the case of a unique optimal solution.

Theorem 6.4 shows that for the case of a unique optimal solution, absorption of
solutions and finite reachability are not compatible, i.e. we can not find a strategy
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which guarantees both absorption of solutions and finite reachability. Consequently,
P[s<∞ /∈ S∗] > 0 holds at least in the case of a unique optimal solution.

Theorem 6.4. Assume |S∗| = 1, then absorption of solutions and finite reachability are
mutually exclusive.

Proof. Assume that s∗ = (s∗1, . . . , s
∗
L) is the unique optimal solution. We use [X

(·)
t (1) 6=

s∗1] to abbreviate [X
(n)
t (1) 6= s∗1 for all n ∈ {1, . . . , N}].

We first derive a more strict necessary condition for finite reachability. Observe that

[X
(·)
t (1) 6= s∗1] for all t ∈ N implies τ = ∞. Hence, P(τ < ∞) = 1 requires P

(
X

(·)
t (1) 6=

s∗1 for all t ≥ 0
)

= 0. Denote Xt for [X
(·)
m (1) 6= s∗1,m = 0, . . . , t− 1], then

0 = P
(
X

(·)
t (1) 6= s∗1 for all t ∈ N ≥ 0

)
(6.33)

= P
(
X

(·)
0 (1) 6= s∗1

) ∞∏
t=1

P
[
X

(·)
t (1) 6= s∗1

∣∣Xt]
Observe that using Lemma 5.5 for t ≥ 1

P
[
X

(·)
t (1) 6= s∗1

∣∣Xt] = E
[(

1−Q(s∗1; �, 1,Πt)
)N ∣∣Xt]

≥ E
[(

1− ~
(
Q′(s∗1; �, 1,Πt)

))N ∣∣Xt] (6.34)

=
[
1− ~

(
Q′(s∗1; �, 1,Π0)

t∏
m=1

(1− ρ�m)
)]N

,

where we use the fact that under condition Xt we have Wm(s∗1, 1) = 0 for m = 0, . . . , t−1
by assumption (5.8) and fact that M0 = ∅. Hence we may apply Lemma 5.6 d) with
w = 0 and i = 0, y = �, T = 0 to obtain the last equality in (6.34). Recall that
ρ�m = ρm/

∑
a′∈C0(�) Πm(a′, 1).

Under assumption (5.2), (5.3) and (5.4), we know Q(s∗1; �, 1,Π0) ∈ (0, 1) and hence

P
(
X

(·)
0 (1) 6= s∗1

)
> 0. Now (6.33) and (6.34) show that reachability of the optimal

solution requires
∞∏
t=1

[
1− ~

(
Q′(s∗1; �, 1,Π0)

t∏
m=1

(1− ρ�m)
)]

= 0,

and by Lemma 5.1 a) and Lemma 5.4 c) this is equivalent to

∞∑
t=1

`
( t∏
m=1

(1− ρ�m)
)

=∞. (6.35)

We are now going to show that absorption implies that (6.35) does not hold. If the
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algorithm is almost surely absorbed in finite time, then

1 = P
(
∃a ∈ A ∃k ∈ N ∀m ≥ k X(·)

m (1) ≡ a
)

=
∑
a∈A

P
(
∃k ∈ N ∀m ≥ k X(·)

m (1) ≡ a
)

=
∑
a∈A

lim
k→∞

P
(
∀m ≥ k X(·)

m (1) ≡ a
)

= lim
k→∞

∑
a∈A

P
(
∀m ≥ k X(·)

m (1) ≡ a
)
.

(6.36)

We may use the recursion of Lemma 5.6 c) for y = �, T = 0 and obtain from Lemma 5.1
(5.14) that for all m ≥ k

Q′(a; �, 1,Πm) ≤ 1−
(
1−Q′(a; �, 1,Π0)

) m∏
l=1

(1− ρ�l ).

This may be used to deduce in (6.36)

P
(
∀m ≥ k X(·)

m (1) ≡ a
)

= P[X
(·)
k (1) ≡ a]

∞∏
m=k+1

P
(
X(·)
m (1) ≡ a

∣∣ Nm
k

)
(6.37)

≤
∞∏

m=k+1

E
[
~
(
Q′(a; 1, �,Πm)

)N ∣∣ Nm
k

]
≤

∞∏
m=k+1

E
[
~
(

1−
(
1−Q′(a; 1, �,Π0)

) m∏
l=1

(1− ρ�l )
)N∣∣Nm

k

]
=

∞∏
m=k+1

[
1− `

((
1−Q′(a; 1, �,Π0)

) m∏
l=1

(1− ρ�l )
)]N

,

where Nm
k denotes the event [X

(·)
t (1) ≡ a,∀t = k, . . . ,m− 1]. With (6.37) and (6.36), we

derive that absorption requires

∞∏
m=1

[
1− `

((
1−Q′(a; 1, �,Π0)

) m∏
l=1

(1− ρ�l )
)]N

> 0

for at least one a ∈ A which again by Lemma 5.1 a) and Lemma 5.4 c) is equivalent to

∞∑
m=1

`
( m∏
l=1

(1− ρ�l ) <∞ (6.38)

contradicting (6.35).

Note that Theorem 6.4 does not mean that once absorption of solutions holds, no
optimal solution can occur. It just means that we can not find a suitable strategy which
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may almost surely lead the framework efficiently narrow its search range and simulta-
neously guarantee to find an optimal solution. Actually, from the runtime analysis in
Section 5.4, we have seen that it is possible that the framework efficiently narrows its
search range and simultaneously reaches an optimal solution in finite iterations, but the
probability can not be 1.
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6.3 Absorption of models

Recall that the motivation of MBS algorithms is to iteratively evolve a model so as to
reach a limit concentrating on optimal solutions. Hence, the following questions may be
of great importance in theoretical analysis of MBS algorithms.

Question 1 Does there exist a setting which makes (Πt)t=0,1,2,... convergent
almost surely?

Question 2 Does there exist a setting which makes (Πt)t=0,1,2,... convergent to a
limiting model Π∞ concentrated on some optimal solution almost surely?

Obviously, a negative answer to Question 1 also negate Question 2. So, we inspect
Question 1 first.

Theorem 6.5 below leads a positive answer to Question 1. It shows that absorption of
solutions implies absorption of models. Thereby, from Theorem 6.1 if we set ρt ≥ ρ > 0
for some constant ρ and all t ∈ N, models converge to an one-point distribution in P, i.e.
s∞ exists. Theorem 6.5 also says that once s<∞ exists, s∞ would also exist. Moreover,
we see in the proof that s<∞ = s∞ provided s<∞ exists.

Theorem 6.5. Assume absorption of solutions and (6.3), and we use NM, GTMU,
LTMU with WO or LTMU with FIFO to update memories, then absorption of models
hold.

Here, we recall that NM shorts for “non-memory”, GTMU shorts for “global truncate
memory update”, LTMU shorts for “local truncate memory update”, WO shorts for
“worst out” and FIFO shorts for “first in first out”. In NM, we do not use memory i.e.
Mt ≡ ∅. In GTMU, we use the M best solutions in Xt ∪Mt as next memory Mt+1,
where M indicates the memory size. In LTMU, we first remove some solutions in Mt

by an out rule, then form Mt+1 with the resulted memory by adding the same number
of best solutions in Xt. The frequently used out rules in LTMU are WO and FIFO.

Proof of Theorem 6.5. We only show the Theorem for the case NM. Other cases are
similar with observation of Theorem 6.3.

We assume that we do not use memory. Absorption of solutions formally means that
there are random variables T < ∞ and s<∞ =

(
s<∞(1), . . . , s<∞(L)

)
taking on values

in S such that almost surely

for all t > T Xt =
(
s<∞, . . . , s<∞

)
. (6.39)

Note that N b
t is a subsample of Xt under NM. Hence by (6.39), it is almost surely that

for all t > T N b
t =

(
s<∞, . . . , s<∞

)
.

By assumption (5.8) and (5.9) this implies Wt

(
s<∞(i), i

)
= 1 and Wt

(
s<∞(i), i

)
= 0

for all a 6= s<∞(i) and all t > T . Note that if there are infinitely t ∈ N such that ρt = 1,
then absorption of models follows immediately. Because Πt(a; i) = Wt−1(a; i) when
ρt = 1. So, now we only consider the case ρt ∈ (0, 1) for all t ∈ N.
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By the necessary condition (6.38) for absorption of solutions in the proof of Theorem
6.4, we have

∞∑
t=1

t∏
m=1

(1− ρ�m) <∞.

This implies
∞∏
t=1

(1− ρ�t ) = 0.

By b) of Lemma 5.6, we have
ρ�t ∈ (0, 1)

when ρt ∈ (0, 1). Hence by a) of Lemma 5.1, we have

∞∑
t=1

ρ�t =∞.

Note that by a) of Lemma 5.6,

lim
t→∞

ρ�t
ρt
≤ lim

t→∞
sup G0(�; Πt) ≤ 1.

Therefore, sequence {ρt}t∈N and {ρ�t }t∈N have the same convergence property. As a
result

∞∑
t=1

ρt =∞.

By a) of Lemma 5.1, we have
∞∏
t=1

(1− ρt) = 0. (6.40)

Hence we may use the basic recursion (4.21) and Lemma 5.1 (5.14) to obtain for all
t > T almost surely

Πt(a; i) ≤ ΠT (a; i)
t∏

m=T+1

(1− ρm) for a 6= s<∞(i)

Πt

(
s<∞(i); i

)
≥ 1−

(
1−ΠT

(
s<∞(i); i

)) t∏
m=T+1

(1− ρm)

which for t → ∞ converges to the probability measure concentrated on s<∞ by (6.40).

Theorem 6.5 presents a positive answer to Question 1. But it can not lead to a positive
answer of Question 2, since absorption of solutions and finite reachability are mutually
exclusive for the case of |S∗| = 1.
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However, [Gut02] and [Mar05] have given a positive answer to Question 2 for the case
of M = GTMU with memory size M = 1. In [Gut02], W. J. Gutjahr showed that if
|S∗| = 1, M = GTMU, S = TS (truncate selection) with subsample size Nb = 1, L =
WL (weighted learning), and

ρt ≤ 1− log t

log(t+ 1)
∀t ≥ 1 and

∞∑
t=1

ρt =∞,

then it follows almost surely that
(
Πt

)
t∈N converges to a limiting model concentrating

on the unique optimal solution. In [Mar05], L. Margolin showed the same result in the
case of |S∗| = 1, M = GTMU, S = TS with Nb = 1, L = UL (uniform learning).

Theorem 6.6 below continues [Gut02] and [Mar05]. Particularly, it also shows a posi-
tive answer for Question 2 in the case of LTMU. Note that

∀t ≥ 1, ρt ≤ 1− log t

log(t+ 1)
⇒

∞∑
t=1

t∏
m=1

(1− ρm)L =∞.

Therefore, Theorem 6.6 also weakens the conditions in [Gut02] and [Mar05] greatly.

Theorem 6.6. Assume |S∗| = 1 and we use GTMU to update memory, and TS, MID
or MRS selection to select N b

t from Xt ∪Mt. Let M = 1 be the memory size, Nb = 1 be
the subsample size. Then if

∞∑
t=1

t∏
m=1

(1− ρm)L =∞ and

∞∑
t=1

ρt =∞

then absorption of models holds, and the limiting model must concentrate on the unique
optimal solution only. Furthermore, if we use LTMU with WO to update memory and
TS to select subsample, and set M > 2, Nb = 1, then the conclusion still holds.

Recall that in TS selection, we take the Nb best solutions in Mt∪Xt as the subsample
N b
t . In MID selection, we set N b

t = Mt+1. And in MRS, we form N b
t by a random

selection based on solutions qualities from Mt+1. Note that under GTMU, when M =
Nb = 1, the selection TS, MID and MRS become identical i.e. they always select the best
so far solution. However, when Nb < M, the three selections are different. In Theorem
6.7, we will see that when Nb ≤ M, Theorem 6.6 still holds. The following only shows
the proof for the case GTMU. For the case LTMU with WO (worst out rule) and TS
selection, the proof is completely the same with observation to the fact that when the
unique optimal solution occurs, the memory will always contain it under the worst out
rule.

Proof of Theorem 6.6. Let s∗ = (s∗1, . . . , s
∗
L) be the unique optimal solution. Assume

that the memory update rule is GTMU, subsample selection rule is TS, MID or MRS,
M = Nb = 1. Note that by a) of Theorem 5.7, we have

P
[
τ <∞

]
= 1. (6.41)
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By (6.41), we have that
P
[
s∗ ∈ XT

]
= 1 (6.42)

for some random time T ∈ N. We are to show that [s∗ ∈ XT ] implies Πt → Π∞ as
t→∞, where

Π∞(a; i) :=

{
1 if a = s∗i ,

0 otherwise,
for all a ∈ A and i = 1, . . . , L.

Obviously, this proves the Theorem.
Recall that we use GTMU (global truncate memory update) to update memory, and

memory size M = 1. Therefore, conditioned on [s∗ ∈ XT ] we have

∀t ≥ T + 1 Mt = (s∗) and ∀t ≥ T N b
t = (s∗) (6.43)

under TS (truncate selection), MID (memory identity selection) and MRS (memory
random selection). By (6.43), (5.8) and (5.9), we have

Wt(a; i) =

{
1 if a = s∗i ,

0 otherwise,
for all a ∈ A, t ≥ T and i = 1, . . . , L. (6.44)

It follows immediately by (6.44) and (5.15) of Lemma 5.1 that

Πt(a; i) = ΠT (a; i)
t∏

m=T+1

(1− ρm) if a 6= s∗i

Πt(a; i) = 1−
(
1−ΠT (a; i)

) t∏
m=T+1

(1− ρm)

for all s ∈ A, i = 1, . . . , L and t ≥ T + 1. Thereby, by Lemma a) of Lemma 5.1 and

∞∑
t=1

ρt =∞,

we complete the proof.

Theorem 6.6 shows an example for P[s∞ ∈ S∗] = 1. Hence, it may follow immediately
from Theorems 6.4 and 6.6 that absorption of models does not necessarily mean absorp-
tion of solutions. Moreover, existence of s∞ does not imply existence of s<∞, although
existence of s<∞ implies s∞ = s<∞.

Actually, we can further extend Theorem 6.6 to the case that Nb ≤M i.e. subsample
size is not bigger than the memory size. Note that

∞∑
t=1

t∏
m=1

(1− ρm)L =∞⇒ ρk ∈ (0, 1) and
∞∑
t=t′

t∏
m=t′

(1− ρm)L =∞ for all k, t′ ≥ 1.

(6.45)
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By the general assumption (5.2) on Π0 and Lemma 5.2 d), we know that

Πt′(a; i) > 0 for all t′ ≥ 1, a ∈ A and i = 1, . . . , L (6.46)

since each ρk ∈ (0, 1). Recall that the underlying stochastic process is Markov chain.
By (6.46) and second part of (6.45) i.e.

∞∑
t=t′

t∏
m=t′

(1− ρm)L =∞ for all t′ ≥ 1

the unique optimal solution can be visited infinite times, since the sufficient condition
(Theorem 5.7 a)) for finite reachability still holds after any iteration t′ ∈ N. When we
use GTMU to update memory, there must exist an iteration T after which the memory
is filled only by copies of the unique optimal solution, due to the finite size of memory
and infinite visiting times of the unique optimal solution. Therefore, under TS, MID or
MRS selection, after finite iterations, the subsample is also filled only by copies of the
unique optimal solution. This results in the following Theorem.

Theorem 6.7. Assume |S∗| = 1. We use GTMU to update memory, and TS, MID or
MRS selection to select N b

t from Xt ∪Mt. Let Nb ≤M . If

∞∑
t=1

t∏
m=1

(1− ρm)L =∞ and
∞∑
t=1

ρt =∞

then absorption of models holds, and the limiting model must concentrate on some opti-
mal solution only.

Proof. By the above discussion, we may assume a random time T ∈ N such that

∀t ≥ T + 1 Mt = (s∗, . . . , s∗︸ ︷︷ ︸
M

) and ∀t ≥ T + 1 N b
t = (s∗, . . . , s∗︸ ︷︷ ︸

Nb

)

where s∗ is again the unique optimal solution, we use GTMU to update memory. Then
the Theorem follows in a completely same way as in the proof of Theorem 6.6.

For the non-memory case, Question 2 is still a theoretically open question, see [CJK07].
Note that a setting for Question 2 must make finite reachability also holds. By Theorem
6.4, finite reachability and absorption of solutions are mutually exclusive. And by The-
orem 6.5, absorption of solutions implies absorption of models. Hence in non-memory, a
first step to answer Question 2 is either to show non-equivalence of absorption of mod-
els and absorption of solutions or to check the compatibility of finitely reachability and
absorption of models.

The following is a Theorem presented in [WK14b] which shows that absorption of
models and finite reachability are also compatible under non-memory case. The proof
of which is very complex and tedious, we will not present it here. Please see [WK14b]
for a reference.
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Theorem 6.8. Assume M = NM (non-memory), S = TS (truncate selection), L =
UL (uniform learning). Assume that ρ ∈ (0, 1) and ck ∈ N for k = 0, 1, . . . , with c0 = 1,
are chosen such that

∞∑
k=1

ck(1− ρ)kL =∞.

Define ek :=
∑k

i=1 ci−1, k ≥ 1, and let xk ∈ (0, 1) be any sequence such that
∑∞

k=1 xk <
∞. We may now define a learning rates sequence

ρt :=


ρ if t = ek for some k ≥ 1

1− (1− xk)
1

ck−1 if ek < t < ek+1 for
some k ≥ 1

(6.47)

for t ≥ 1. Then absorption of models holds, it has P(τ < ∞) = 1, and its samples do
not converge.

As an example for the values in Theorem 6.8, take an arbitrary ρ > 0, then one may
choose ck = (1− ρ)−kL to obtain

∞∑
k=1

ck(1− ρ)kL =

∞∑
k=1

1 =∞.

For ρ < 1/2, one could, for example, use ck := 2kL.
As an end, we mention a completely different study about convergence of models in

the literature. In [ZM04], Zhang et al showed that the models of a particular UMDA
(our framework with ρt ≡ 1 andM = NM) almost surely converges to a limit which con-
centrates on optimal solutions, if the sample size N and subsample size Nb are assumed
to be infinite.

Note that if we do not use memory and ρt ≡ 1, the next model Πt+1 is exactly the
empirical distribution Wt learned from a subsample N b

t of present solutions Xt. If the
sample size N =∞, we can identify present sample Xt by its theoretical model Πt. And
the subsample N b

t is then produced by a distribution Πse
t which can be defined as

Πse
t (s) =

g(f(s))Πt(s)∑
y∈S g(f(y))Πt(y)

for all s ∈ S,

where g is a non-negative decreasing function, f is the objective function, and we consider
a minimizing instance here. For example, in a truncate selection, g is defined as

g(x) =

{
1 if x < fα,Πt ,

0 otherwise,

where fα,Πt is a constant determined by equation

Πt

[
f(s) < fα,Πt

]
= α
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for some fixed selection rate α ∈ (0, 1), and then

Πse
t (s) =

1{y∈S|f(y)<fα,Πt}(s)Πt(s)∑
y∈S,f(y)<fα,Πt

Πt(y)
for all s ∈ S; (6.48)

in a random selection, g(x) is typically 1/x, and then

Πse
t (s) =

1
f(s)Πt(s)∑
y∈S

1
f(y)Πt(y)

for all s ∈ S. (6.49)

With assumption that Nb =∞, Wt = Πse
t holds almost surely, since Wt is the empirical

distribution of N b
t and Πse

t is the theoretical distribution of N b
t . However, Πt+1 = Wt

holds when ρt ≡ 1. Therefore,

Πt+1(s) = Πse
t (s) =

g(f(s))Πt(s)∑
y∈S g(f(y))Πt(y)

for all s ∈ S. (6.50)

This means that the models process
(
Πt

)
t=0,1,2,...

can be explained by a deterministic

recursion (6.50) if we assume N = Nb =∞. By (6.48) or (6.49) instead of Πse
t in (6.50),

we may easily show that the models process eventually converges to a limit concentrating
on optimal solutions by recursive calculations. Actually, fα,Πt approaches the optimal
objective value f∗ as t→∞ for any α ∈ (0, 1) in the case of truncate selection. And by
(6.49),

Πt+1(s) =

1
(f(s))tΠ0(s)∑
y∈S

1
(f(y))tΠ0(y)

→
{

0 if s /∈ S∗,
Π0(s)∑

y∈S∗ Π0(y) if s ∈ S∗, as t→∞,

in the random selection case, here we assume without loss in generality that each objec-
tive value f(s) is positive.
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7 An experimental study

In Chapters 5, we have presented conditions for guaranteeing to reach an optimal solution
(finite reachability, see Theorem 5.7), and conditions for efficiently reaching an optimal
solution with an overwhelming probability (runtime results, see Theorems 5.8-5.9). In
particular, we see that the popular setting ρt ≡ ρ can not guarantee to find an optimal
solution, however we can make the probability for the occurrence of optimal solutions as
large as possible if we reduce the constant ρ, see Theorem 5.7 c). Moreover, we see that
in the case of a constant learning rate, if we adapt the sample size to the problem size or
employ restricted models, the probability for optimal solutions occurring in a polynomial
runtime may approximate 1 as problem size approaches infinity, see Theorems 5.8-5.9.

In Chapter 6, we inspected the absorption behavior of the underlying process. We
found that when ρt > ρ > 0, the sampling will be frozen in a single solution (s<∞) after
finite iterations (absorption of solutions), see Theorem 6.1. By Theorem 6.3, we seen
that s<∞ is often a high quality solution compared to those seen in history. Moreover, we
seen further that absorption of solutions and finite reachability conflicts with each other
at least in the case of a unique optimal solution, see Theorem 6.4. This may explain why
we can not guarantee to reach an optimal solution if we use a constant learning rate. In
the study of the model process, we found that absorption of solutions makes the models
converge to a limit which concentrating on a single solution s∞ (absorption of models,
see Theorem 6.5), and in this case s∞ = s<∞. Moreover, we found conditions under
which the models converge to a limit concentrating on an optimal solution (s∞ ∈ S∗,
see Theorems 6.6-6.7), and absorption of solutions does not hold. This shows that
absorption of models does not imply absorption of solutions. However, presently we can
only show that absorption of models and finite reachability are compatible in the case
of non-memory update, see Theorem 6.8.

This Chapter aims to verify the theoretical findings in Chapter 5 and Chapter 6. We
will implement the framework on a TSP instance, and check its practical performance.
However, we will concentrate only on the case of a constant learning rate i.e. ρt ≡ ρ > 0.
Although we find some good properties for the case of non-constant learning rates, see
Theorem 5.7 a)-b) and Theorems 6.6-6.7, we are presently not able to show these effects
in our practical experiments. However, our experimental results will clearly demonstrate
Theorem 5.7 c) i.e.

ρt ≡ ρ > 0⇒ P
[
τ <∞

]
< 1, but P

[
τ <∞

]
→ 1 as ρ→ 1

where recall that τ is the first hitting time for optimal solutions. Also, we are not able to
experimentally show the polynomially runtime results see Theorems 5.8-5.9, since they
may hold only for an extremely large problem size.
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The experimental results also witness absorption of solutions and models. We will
see that the magnitude of the constant learning rate ρ heavily affects the absorbing
time T and the absorbing solution s<∞, where recall that s<∞ coincides with s∞ when
absorption of solutions holds (see Theorem 6.5). Moreover, we shall see that when we
introduce some greedy insight into the feasibility construction, the occurring frequency
of optimal solutions will be significantly increased, simultaneously the absorbing time
will be decreased.

To simplify our discussion, we will fix the memory update rule as NM i.e. Mt ≡ ∅, the
subsample selection rule as TS i.e. truncate selection, and the learning rule as UL i.e.
uniform learning. That means that in the experiment study, we will learn the empirical
model Wt by the relative frequencies in some elite solutions N b

t choosing from present
sample Xt.

7.1 Random tour generation and learning

As mentioned, we will verify the findings on a TSP instance. We now explain the random
solution generation in the experimental study, and the learning of empirical models for
this particular instance.

Assume that the instance has n cities, therefore has possibly n2 arcs. We label the
cities as 0, 1, 2, . . . , n− 1. Then, the arcs are correspondingly labeled by pairs

(0, 0), (0, 1), . . . , (0, n− 1); · · · ; (n− 1, 0), (n− 1, 1), . . . , (n− 1, n− 1).

Here, a feasible solution is a tour which starts from a city, traverses each of other cities
exactly once and then returns back to the start city. Formally, a feasible tour is a
sequence of arcs

(i0, i1), (i1, i2), . . . , (in−2, in−1), (in−1, i0) (7.1)

where (i0, i1, . . . , in−2, in−1) is a permutation of {0, 1, 2, . . . , n− 1}. Obviously, a permu-
tation of {0, 1, 2, . . . , n− 1} also uniquely determines a feasible tour.

In the experimental study, we represent each feasible tour as a permutation of the
cities (string over cities). For a feasible tour s = (i0, i1, . . . , in−2, in−1), the traveling cost
is calculated as

f(s) =

n−2∑
l=0

d(il, il+1) + d(in−1, i0)

where each dil,il+1
is the distance between cities il and il+1. We will select a TSP instance

consisting of 38 cities in a country. The distance is then calculated according to their
geographical locations.

7.1.1 Random solution generation

In the experimental study, the model Πt for each iteration t ∈ N is a matrix(
πt(i, j)

)
i=0,1,2...,n−1,j=0,1,2,...,n−1

,
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such that
∑n−1

j=0 πt(i, j) = 1 for all i = 0, 1, 2, . . . , n− 1. We construct a random solution
by iteratively extending a partial permutation.

In the case of a non-greedy feasibility construction, for a partial permutation y =
(i0, i1, . . . , il) with l < n−1, we select a feasible continuation il+1 ∈ Cl(y) = {0, 1, 2, . . . , n−
1} − {i0, . . . , il} with a distribution

Q
(
a; y, l + 1,Πt

)
=

{
πt(il,a)∑

b∈Ci(y)
πt(il,b)

if a ∈ Ci(y),

0 otherwise,
(7.2)

for all a = 0, 1, 2, . . . , n − 1. Here, if y = �, we randomly choose a starting city, i.e. we
start with an arbitrary city.

In the case of greedy feasibility construction, we define feasibility distributions accord-
ing to the distance information as,

• C0(�; a) = 1/n for each city a, i.e. we start with an arbitrary city;

• ∑n−1
a=0 Ci(y; a) = 1, and

Ci(y; a) =


[
1/d(il,a)

]β
∑
b∈Ci(y)

[
1/d(il,b)

]β if a ∈ Ci(y),

0 otherwise,

for each partial permutation y = (i0, i1, . . . , il) with l < n − 1, where Cl(y) =
{0, 1, 2, . . . , n− 1} − {i0, . . . , il}.

Then, the selection probability for a feasible continuation il+1 ∈ Ci(y) to a partial
permutation y = (i0, i1, . . . , il) with l < n− 1 becomes

πt(il, il+1)
[
1/d(il, il+1)

]β∑
b∈Ci(y) πt(il, b)

[
1/d(il, b)

]β . (7.3)

Obviously, as β →∞, the probability (7.3) approximates 0 if d(il, il+1) 6= min{d(il, b) | b ∈
Ci(y)}. And when β = 0, the feasible continuation is chosen only by the present model
Πt. Therefore, when β is bigger, the feasible continuation may be more likely the nearest
continuation i.e. the greedy information dominates the choice of the continuation in the
feasibility construction. When β is small, the present model may dominate the choice
of the continuation. In the literature of ACO, see [DMC96], [DG97a], [DG97b] etc, β is
generally taken to be 5.0. However, we find that β = 6.0 is better for our test instance.
So, in the sequel of this Chapter, we will fix the constant β = 6.0.

Note that, as discussed in Subsection 4.2.3, these two samplings can be both stated in a
more standard terms of feasibility construction, i.e. we can restate them by representing
the tours as strings over arcs.

7.1.2 Learning the empirical distribution Wt

In the experimental study, we use uniform learning, and the subsample N b
t is trun-

cate selected from the present sample Xt. Let X
(1)
t , . . . ,X

(N)
t be the present solutions.
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According to their traveling costs, we order them as

f(X
(l1)
t ) ≤ . . . ≤ f(X

(lN )
t )

where f is the traveling cost function. We collect the Nb best solutions in N b
t i.e.

N b
t =

(
X

(l1)
t , . . . ,X

(lNb )

t

)
.

Here, we write each solution as permutation i.e.

X
(lm)
t = (ilmt,0, i

lm
t,1, . . . , i

lm
t,n−1)

is a permutation of 0, 1, 2, . . . , n − 1, for m = 1, . . . , Nb. By uniform learning, Wt =(
Wt(i, j)

)
i=0,1,2,...,n−1;j=0,1,2,...,n−1

is calculated as

Wt(i, j) =

∑
s∈N bt

1{(a,b)∈E | (a,b)∈s}(i, j)

Nb

where E is collection of arcs, (a, b) ∈ smeans that arc (a, b) is on tour s = (i0, i1, . . . , in−1)
i.e.

∃j = 0, 1, . . . , n− 2 a = ij , b− ij+1 or a = in−1, b = i0.

Obviously, Wt(i, j) is the relative frequency of arc (i, j) in N b
t . After learning, the next

model Πt+1 =
(
πt+1(a, b)

)
(a,b)∈E is constructed as

πt+1(a, b) = (1− ρ)πt(a, b) + ρWt(a, b)

for each (a, b) ∈ E, where ρ ∈ (0, 1] is constant learning rate. In the experimental, we
want to see how ρ affects the performance resp., in the two feasibility constructions (7.2)
and (7.3).

7.2 Experimental study

7.2.1 The test instance

The test instance is a TSP problem of 38 cities i.e. n = 38, called dj38 in the world TSP
library:

http : //www.math.uwaterloo.ca/tsp/world/.

The Figure 7.1 (a)-(b) shows resp., its corresponding points set and an optimal tour.
The optimal tour is of length 6659.43.1 The geographical locations of the 38 cities are
listed in Table 7.1. The distances between different solutions are calculated according
to their geographical locations. For example, the distance between city 0 and 1 is

d(0, 1) =
√

(x0 − x1)2 + (y0 − y1)2

=
√

(11003.611100− 11108.611100)2 + (42102.500000− 42373.888900)2

≈ 290.993.

1The value for this optimal tour reported in the library is 6656, however the value under C++ 64 bit
is 6659.43.
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(a) points set (b) An optimal tour

Figure 7.1: A TSP test instance

The size of the feasible set for this instance (i.e. total number of possible feasible tours)
is

37!/2 = 688187654561317252315798979079045120000000 ≈ 6.88188× 1042.

7.2.2 Experimental setting

We take sample size N = 100 and subsample size Nb = 5. We do not use memory, use
truncate selection and the uniform learning. The first model

Π0 =
(
π0(i, j)

)
i=0,1,2,...,37;j=0,1,2,...,37

is taken to be ‘uniform’ i.e. each π0(i, j) = 1/38 ≈ 0.026315. The framework is written
in C++ with Qt, and implemented on a 64 bit machine under Linux system. We test the
framework under the two different random solution generations i.e. non-greedy feasibility
construction (7.2) and greedy feasibility construction (7.3). For each case, we test the
framework with several different constant learning rates.

7.2.3 Results under non-greedy feasibility construction

Under the non-greedy feasibility construction (7.2), we implement the framework on dj38
under 21 different constant learning rates see (Table 7.2). For each constant learning
rate, we do 50 independent trials, i.e. we did totally 21 × 50 trials under non-greedy
feasibility construction. For each trial, we stop the framework if the sampling has been
frozen at a fixed solution for 1000 consecutive iterations. Figure Table 7.2 collects the
experimental results.

Each row of Table 7.2 reports the average performance over the 50 independent trials
for a corresponding constant learning rate. The first column lists all the rates we em-
ployed. The column f(s∗) lists the optimal cost value as a reference. Column Fre(s∗)
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cities xi (x-coordinate) yi (y-coordinate)

0 11003.611100 42102.500000

1 11108.611100 42373.888900

2 11133.333300 42885.833300

3 11155.833300 42712.500000

4 11183.333300 42933.333300

5 11297.500000 42853.333300

6 11310.277800 42929.444400

7 11416.666700 42983.333300

8 11423.888900 43000.277800

9 11438.333300 42057.222200

10 11461.111100 43252.777800

11 11485.555600 43187.222200

12 11503.055600 42855.277800

13 11511.388900 42106.388900

14 11522.222200 42841.944400

15 11569.444400 43136.666700

16 11583.333300 43150.000000

17 11595.000000 43148.055600

18 11600.000000 43150.000000

19 11690.555600 42686.666700

20 11715.833300 41836.111100

21 11751.111100 42814.444400

22 11770.277800 42651.944400

23 11785.277800 42884.444400

24 11822.777800 42673.611100

25 11846.944400 42660.555600

26 11963.055600 43290.555600

27 11973.055600 43026.111100

28 12058.333300 42195.555600

29 12149.444400 42477.500000

30 12286.944400 43355.555600

31 12300.000000 42433.333300

32 12355.833300 43156.388900

33 12363.333300 43189.166700

34 12372.777800 42711.388900

35 12386.666700 43334.722200

36 12421.666700 42895.555600

37 12645.000000 42973.333300

Table 7.1: Point sets for test instance
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ρt ≡ ρ f(s∗) Fre(s∗) ε̄ Avef(X∗) AveTab Avef(s<∞) Diff

1.00 6659.43 0 0.394479 9286.43 21.56 9298.4 11.97

0.95 6659.43 0 0.399518 9319.99 27.66 9322.24 2.64

0.90 6659.43 0 0.371696 9134.71 30.94 9136.43 1.2

0.85 6659.43 0 0.331936 8869.94 34.64 8878.09 8.15

0.80 6659.43 0 0.328991 8850.32 38.22 8852.39 2.06

0.75 6659.43 0 0.320315 8792.54 41.48 8795.69 3.15

0.70 6659.43 0 0.290637 8594.9 44.22 8599.37 4.47

0.65 6659.43 0 0.2667 8435.5 49.2 8438.27 2.77

0.60 6659.43 0 0.247458 8307.36 53.9 8313.86 6.5

0.55 6659.43 0 0.23021 8192.5 61.98 8195.39 2.89

0.50 6659.43 0 0.202434 8007.53 69.64 8014.62 7.09

0.45 6659.43 0 0.173463 7814.59 79.4 7820.45 5.86

0.40 6659.43 0 0.149557 7655.39 95.74 7656.44 1.05

0.35 6659.43 0 0.118443 7448.19 110.5 7453.03 4.84

0.30 6659.43 0 0.0929187 7278.22 131.96 7279.19 0.97

0.25 6659.43 0 0.059581 7056.21 167.56 7060.09 9.88

0.20 6659.43 0 0.0486467 6983.39 215.06 6988.92 5.53

0.15 6659.43 4 0.0303003 6861.21 286.64 6863.44 2.23

0.10 6659.43 13 0.0124708 6742.48 453.24 6742.52 0.04

0.05 6659.43 27 0.0067184 6704.17 930.44 6704.19 0.02

0.01 6659.43 45 0.000791341 6664.7 5051.62 6664.7 0.00

Table 7.2: Implementation results for non greedy case
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records the number of trials (among the 50 independent trials) in which we observed an
optimal solution, for each ρ. For example, when ρ = 0.10, we observed optimal solutions
in 13 trials. Due to the independence of the 50 trials, Fre(s∗)/50 is an unbiased estima-
tor for P

[
τ < ∞

]
. Column Avef(X∗) is the average cost value of the 50 best solutions

found resp., in the 50 independent trials. Column ε̄ is the relative error of Avef(X∗) i.e.

ε̄ =
Avef(X∗) − f(s∗)

f(s∗)
.

Column AveTab reports the average of the 50 absorbing times observed resp., in the 50
independent trials. Here, we define the absorbing time for one trial as the first iteration,
from which the sampling always produces a fixed solution s<∞. Column Avef(s<∞)

reports the average cost value of the 50 absorbing solutions s<∞ observed resp., in the
50 trials. Column Diff is the difference of Avef(s<∞) and Avef(X∗) i.e. Diff=Avef(s<∞)-
Avef(X∗).

Witness for absorption of solutions and models
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Figure 7.2: Plots of the iteration best, iteration worst and best so far costs

To check the possible absorption behavior, we arbitrarily take out 1 trial from the
50 trials under ρ = 0.3. And we draw three plots in Figure 7.2 resp., for the costs of
iteration worst solution (blue line), iteration best solution (red line) and best solution so
far (yellow line) observed in this trial. Recall that, in each trial, the sample size N = 100
i.e. we sample 100 random solutions. For each iteration, the iteration worst solution is
the worst solution among the 100 solutions sampled in present iteration, the iteration
best solution is the best solution among these 100 solutions, and the best solution so far
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represents the best solution among all the solutions sampled in previous iterations as
well as the present iteration. Obviously, these three solutions may vary as iterations.
The three plots in Figure 7.2 shows resp., the variations in their costs as iterations. The
x-axis represents the iteration, and y-axis represents the cost value. The three solutions
have different costs in beginning. And all the three costs decrease as time goes. The
three lines then coincide in an iteration near iteration 200 i.e. the costs become identical
from then on. Hence, the 100 solutions sampled in iteration t ≥ 200 are always of a fixed
cost. This gives an initial impression on absorption of solutions. However, this is not
sufficient to be a witness for absorption of solutions, since different solutions may have a
same cost value. To clearly demonstrate the absorptions, we also take out six iterations,
i.e. iterations 0, 50, 100, 150, 200, 300, in this trial. For each of the selected 6 iterations,
we draw two pictures, one for the 100 tours (solutions) sampled in that iteration and the
other one for the underlying models producing these solutions. We collect the resulted
12 pictures in Figures 7.3-7.4.

For each iteration, we draw the 100 tours according to the points set in Table 7.1
together in one picture, and we draw the corresponding model as a plot in another
picture. Recall that, the model for iteration t is

Πt =
(
πt(i, j)

)
i,j=0,1,2,...,37

.

In the plot, we further encode each arc (i, j) as an integer 38× i+ j, and use this integer
as the x-axis and the probability πt(i, j) as y-axis. If absorption of solutions holds, then
the 100 tours should finally become identical, and show only one tour in the picture.
And if absorption of models holds, the models should finally become a binary string,
and show several vertical lines of length 1 in the picture.

Initially, we take a uniform model i.e. π0(i, j) ≡ 1/38, therefore the plot of the model
is a horizontal line, see Figure 7.3 (b). As a result, the 100 tours for iteration 0 is purely
randomly generated, therefore they show a rather disorganized appearance in Figure 7.3
(a). When t = 50, the model shows a clear tendency to be a binary string (see Figure 7.3
(d)), and many arcs on the 100 sampled solutions coincide (see 7.3 (c)). When t = 100,
the model show a more clear tendency to be a binary string (see 7.3 (f)), and more arcs
on 100 solutions sampled in this iteration coincide (see 7.3 (e)).

When t = 150, the model almost becomes a binary string (see 7.4 (b)), and most
arcs on 100 solutions in this iteration coincide except for few arcs in the left top corner
(see 7.4 (a)). When t = 200, absorption of solutions has already occurred i.e. the 100
solutions become identical (see 7.4 (c)), the model approximates a binary string (see 7.4
(d)). The pictures for iteration 300 are the same as the pictures for iteration 200, see
Figure 7.4 (e)-(f). This further confirms the absorption of solutions and models.
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(a) Iteration 0: 100 tours
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(b) Iteration 0: model

(c) Iteration 50: 100 tours
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(d) Iteration 50: model

(e) Iteration 100: 100 tours
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(f) Iteration 100: model

Figure 7.3: Observation of absorption of solutions and models
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(a) Iteration 150: 100 tours
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(b) Iteration 150: model

(c) Iteration 200: 100 tours
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(d) Iteration 200: model

(e) Iteration 300: 100 tours
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(f) Iteration 300: model

Figure 7.4: Observation of absorption of solutions and models (cont.)
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Relation between ρ and the best found solution

According to Table 7.2, we draw resp., a plot for ρ and the average best found cost
Avef(X∗) in Figure 7.5 (a), a plot for ρ and the average relative error ε̄ in Figure 7.5
(b), and a plot for ρ and Fre{s∗} (i.e. the number of trials in which optimal solutions
occurred) in Figure 7.5 (c).

0 0.2 0.4 0.6 0.8 1

7,000

8,000

9,000

ρ

co
st
s

AvBest
Optimum

(a) for Avef(X∗)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

ρ
ε̄

AvBest

(b) for ε̄

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

ρ

O
cc
u
rr
en
ce

opt

(c) for Fre{s∗}

Figure 7.5: Relation of ρ and best found solution

In Figure 7.5 (a), the red straight line indicating the optimal value 6659.43. The blue
line represents the average best found cost Avef(X∗). Figure 7.5 (a) and (b) clearly shows
that as ρ → 0, the best found solution will approximate optimal solutions. This means
that we may improve the practical performance for an MBS by reducing the constant
learning rate. It is interesting that the best solution cost almost linearly decreases as ρ
increases.

By 7.5 (c), we see that when ρ→ 0, F re{s∗} → 50. This experimentally demonstrates
Theorem 5.7 c). In particular, we see that with a relatively large ρ (≥ 0.20), we are not
able to see an optimal solution in the 50 trials. And when the ρ reaches the threshold
0.15 (see Table 7.2), Fre{s∗} increases rapidly as ρ decreases.
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Relation between ρ, s<∞ and the absorbing time

In the above, we have demonstrated a typical absorption behavior of the solutions and
models. To give more insight to the qualities of absorbing solutions s<∞ and absorbing
time, we draw resp., a plot for ρ and the average absorbing cost Avef(s<∞) in Figure
7.6 (a), a plot for ρ and the average absorbing time AveTab in Figure 7.6 (b), and a
plot for ρ and Diff in Figure 7.6 (c). In (a), the red line again indicates the optimum
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Figure 7.6: ρ and absorption

6659.43, the blue line is the average absorbing cost value Avef(s<∞). It is surprising that
Avef(s<∞) also approximates optimum as ρ→ 0. This means that the absorbing solution
may become an optimal solution if we employ a small enough ρ.

Absorbing time is the first iteration from which the sampling will be frozen at a fixed
solution i.e. s<∞. Therefore, it directly affects the total number of different solutions
the framework can visit. From Figure 7.6 (b), we see that the average absorption time
AveTab increases as ρ → 0. So, decreasing ρ may increase the search capacity i.e. the
total number of possible solutions the framework can visit. When ρ < 0.15 (see Table
7.2), AveTab increases dramatically as ρ decreases. For ρ ≥ 0.15, it changes moderately
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ρt ≡ ρ f(s∗) Fre(s∗) ε̄ Avef(X∗) AveTab Avef(s<∞) Diff

1.00 6659.43 0 0.00556045 6696.46 3.78 6696.46 0.00

0.95 6659.43 7 0.00329671 6681.38 9.1 6681.38 0.00

0.90 6659.43 11 0.00281658 6678.19 9.74 6678.19 0.00

0.85 6659.43 10 0.00182641 6671.59 13.78 6671.59 0.00

0.80 6659.43 13 0.00203408 6672.98 15.42 6672.98 0.00

0.75 6659.43 17 0.00105385 6666.45 17.76 6666.45 0.00

0.70 6659.43 19 0.00182242 6671.57 19.3 6671.57 0.00

0.65 6659.43 24 0.000857031 6665.14 22.5 6665.14 0.00

0.60 6659.43 29 0.000586001 6663.33 25.6 6663.33 0.00

0.55 6659.43 32 0.00039527 6662.06 28.56 6662.06 0.00

0.50 6659.43 36 0.00025947 6661.16 31.94 6661.16 0.00

0.45 6659.43 41 0.000119201 6660.22 37.44 6660.22 0.00

0.40 6659.43 44 7.92956e-05 6659.96 43.58 6659.96 0.00

0.35 6659.43 46 5.53364e-05 6659.8 49.78 6659.8 0.00

0.30 6659.43 46 5.64757e-05 6659.81 62.7 6659.81 0.00

0.25 6659.43 49 1.42916e-05 6659.53 79.66 6659.53 0.00

0.20 6659.43 50 0 6659.43 105.18 6659.43 0.00

0.15 6659.43 50 0 6659.43 167.92 6659.43 0.00

0.10 6659.43 50 0 6659.43 347.36 6659.43 0.00

Table 7.3: Implementation results for greedy case

as ρ. And when ρ > 0.20, it is smaller than 200, see Table 7.2. Therefore, the search
capacity is at most 2 × 104, i.e. the framework can visit at most (200 × 100) different
tours, in this case. Compared to the size 6.88188 × 1042 of underlying feasible set, this
number is extremely small. This may mean that the framework can be rather efficient
when ρ > 0.2. However, we did not see an optimal solution in this case, see Table 7.2.
To balance the efficiency and effectiveness, we would recommend to set ρ = 0.05 under
which we observed optimal solutions in 27 trials and the average absorbing time is 930.44
i.e. the search capacity is 9.3× 104, see Table 7.2.

Figure 7.6 (c) shows the difference between the average absorbing cost and the average
best found cost i.e. Avef(s<∞) − Avef(X∗). We see that this difference is generally not
equivalent to 0. Therefore, the absorbing solution is generally not the same as the best
solution found. However, when ρ small enough (< 0.2), the two costs may coincide. So,
the two solutions may be the same for small ρ. This is an interesting phenomenon.

7.2.4 Under greedy feasibility construction

For the greedy feasibility construction, we take 19 different constant learning rates.
For each learning rate, we also do 50 independent trials. Table 7.3 above shows the
experimental results.

A significant difference with Table 7.2 is that the Column Diff in this case all become 0.
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This means that under greedy feasibility construction, the absorbing solutions are more
likely to be the best solution found. The second significant difference is Column Fre(s∗)
are almost filled by positive integers. This means the greedy feasibility construction
significantly increases the occurring probability of optimal solutions.

Relation between ρ and best found solution
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Figure 7.7: ρ and best found solution for greedy case

Figure 7.7 is drawn according to Table 7.3. Picture (a) shows the plot of the average
best found cost Avef(X∗). Picture (b) shows the plot for the relative error. Picture (c)
shows the plot for the total number of trials among the 50 independent trials in which
we observed an optimal solution.

According to Figure 7.7 (a)-(b), we see that under greedy feasibility construction, the
average best found cost Avef(X∗) is very close to the optimum. In (a), the red horizontal
line again indicates the optimum, and the blue line represents Avef(X∗). We see also that
Avef(X∗) approximates optimum as ρ decreases. The maximal average relative error is
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less than 6 × 10−3, see (b). Moreover, by Figure 7.7 (c), we see that the probability
P[τ <∞] may also approximate 1.0 as ρ decreases.
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Figure 7.8: ρ and absorption for greedy case

ρ and absorption

Figure 7.8 is also drawn according to Table 7.3. Picture (a) shows the plot for the
average absorbing cost Avef(s<∞). Picture (b) shows the plot for the average absorbing
time. Picture (c) shows the plot for the difference between the average best found cost
and the average absorbing cost.

We can see from Figure 7.8 (a) that the average absorbing cost also decreases as ρ
decreases. And it approximates the optimum when ρ is smaller enough. By (b), the
average absorbing time increases as ρ decreases. So, in the greedy feasibility case, the
search capacity also increases as ρ decreases. When ρ is small (ρ < 0.2), the time may
also increase dramatically. It is interesting that in the greedy case, the absorbing cost is
always the same as the best found cost, see (c). Therefore, the absorbing solution may
be the best found solution.
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Figure 7.9: Comparison

Compare with non-greedy case

According to Tables 7.2-7.3, we draw four pictures in Figure 7.9 for a comparison of
greedy and non-greedy feasibility constructions. Picture (a) shows the plots for average
best found costs in the two cases respectively, picture (b) shows the plots for the difference
between average best found cost and average absorbing cost, picture (c) shows the plots
for Fre{s∗}s, and picture (d) shows the plots for average absorbing times. In each
picture, we use red line to indicate the greedy case, and blue line to indicate the non-
greedy case.

By (a), we see that the greedy feasibility construction significantly improves the per-
formance i.e. the average best found cost (red) in greedy case is significantly lower than
average best found cost (blue) in the non-greedy case. In the picture, the red line is
almost a horizontal line, since it is almost an optimum compared to the non-greedy case.

By (b), we see that the average absorbing cost is significantly different with the average
best found cost in the non-greedy case (see blue line). However, the average absorbing
cost is the same as the average best found cost in the greedy case (see red line). There-

7.2. EXPERIMENTAL STUDY 137



Ph. D Thesis Technical University of Clausthal

fore, with greedy feasibility construction, the absorbing ‘accuracy’ is also significantly
improved.

By (c), we see that the greedy feasibility construction may also increase the occurring
probability of optimal solutions. However, when ρ is small enough, the advantage of
greedy feasibility construction will be no longer significant.

By (d), the average absorbing time in greedy case is always smaller than in the non-
greedy case. Therefore, greedy feasibility construction may be more efficient. To further
compare the efficiencies of the two cases, we define the relative efficiency of greedy
feasibility construction for a constant ρ as

average absorbing time in non-greedy− average absorbing time in greedy

average absorbing time in greedy
.

For example, when ρ = 1.0, the average absorbing times are 21.56 in non-greedy case
and 3.78 in greedy case, so the relative efficiency of greedy feasibility construction is

21.56− 3.78

3.78
≈ 4.7037,

see Tables 7.2-7.3 for the values. Note that, the average absorbing time is a very impor-
tant index for the search capacity i.e. the total number of possible feasible solutions the
framework can visit. Therefore, it may reflect the efficiency. By checking the two Tables
more closely, we find that the relative efficiency may decrease as ρ decreases. We can
see that when ρ = 0.6, the relative efficiency is about 1.1055, when ρ = 0.10, the relative
efficiency is about 0.3048. Therefore, when ρ is smaller, the relative efficiency of the
greedy feasibility construction may be no longer significant. So, we would recommend a
relatively big ρ in the greedy case. To balance the efficiency and effectiveness, we would
recommend ρ = 0.5 in the greedy case, by which we observed optimal solutions in 36
trials and the relative efficiency is 1.1803.
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8 Summary and future work

In this Thesis, we investigated some important asymptotic properties for model-based
heuristics in combinatorial optimization. To facilitate our analysis, we proposed a unified
framework for model-based algorithms. In particular, we introduced a sampling mech-
anism called feasibility construction. It can unify the samplings in those model-based
algorithms used in practice. More importantly, it can introduce some greediness and
dependencies into the sampling.

To give some insight to the effectiveness of model-based search, we showed conditions
for guaranteeing to find an optimal solutions. The conditions did not assume a particular
structure of the underlying problem. Therefore, they may apply to all combinatorial op-
timization problems. For some test problems, we also proposed conditions for efficiently
reaching an optimal solution.

In the asymptotic analysis of the underlying solutions, we found that the famous
genetic drift may also hold in model based search. In particular, we found that the sam-
pling in model-based search may stick on a fixed solution after finitely many iterations.
Moreover, the solution freezing the sampling is generally of a high quality compared to
those solutions seen in history.

In model based search, the asymptotic property of the models is of great importance.
By our analysis, we found conditions which make the models converge to a limit con-
centrating on some optimal solution. However, for the memoryless case, we are not able
to show a similar condition. But, our former work has shown that absorption of models
and finite reachability are also compatible in this case.

By implementing the framework on a TSP instance, we are able to verify most of the
findings. In particular, we found that the performance can be significantly improved if
we use a ‘good’ greedy information in the feasibility construction. Moreover, we found
that the absorbing solution can be improved if we use a small learning rate, and the
absorbing time increases as the learning rate decreases. Therefore, higher learning rate
may make the framework rather efficient. However, the quality of best solution found
may be lower in this case.

As we mentioned, in the non-memory case, we are not able to show a condition which
makes the models converge to a limit concentrating on optimal solutions. So, it should
be an interesting topic for a future work. Note that this is an important issue for the
cross entropy algorithm both in combinatorial optimization and in rare event simulation.

In Subsection 4.2.4, we said that the feasibility construction can introduce probabilistic
dependencies into the sampling. The greedy information in TSP actually reflects some
priori probabilistic dependencies. In the experimental study, we have seen that greedy
feasibility construction indeed significantly improves the average performance. However,
many practical problems may not have such a priori greedy information available. So,
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another possibly future work is to learn empirical greedy information from a collection of
best solutions found in history, and then incorporate it into the feasibility construction.
This should be a topic closely related to the field of linkage learning.

In this Thesis, we investigated the runtime only on some rather simple problems.
Due to simply structure, the results may not apply to practical problems. Therefore,
a future work on runtime analysis should concern runtime results on some practical
problems like TSP, scheduling, assignment etc. And the results may have significantly
meaning in practice.
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Appendix

A.1 Some definitions in graph theory

Graphs are fundamental structures in CO. In this section, we collect some elementary
concepts and notations of graphs. All the materials we show here can be also found in
some standard textbooks for CO, see e.g. Korte et al[KV02] Chapter 2.

Given V a finite set, and E ⊆ {(c, d)|c ∈ V and d ∈ V }. Then, we call the pair
G = (V,E) as a graph, and each element in V as a node or vertex. Furthermore, if E
satisfies the condition that,

∀c, d ∈ V, (c, d) ∈ E ⇐⇒ (d, c) ∈ E,

we call G as an undirected graph, otherwise G is called as a directed graph. For an
undirected graph G, we call each element in E as an edge. For a directed graph G, we
call each element in E as an arc. Let e = (v1, v2) be an edge (an arc in the directed
case correspondingly), then we say that vertices v1 and v2 are adjacent. v1 is a neighbor
of v2 (and vice verse). v1 and v2 are called endpoints of e. In the directed case, we say
that e leaves v1 and enters v2. Two edges or arcs which share at least one endpoint are
adjacent. And if a vertex is an endpoint of an edge, we say that it is incident with the
edge. Then, for an arbitrary vertex, we can define its degree as the number of edges (or
arcs) which are incident to it. And in the directed case, we can define the out-degree of a
vertex as the number of arcs leaving it and the in-degree as the number of arcs entering
it.

A walk W on a graph G = (V,E) is a sequence v1, e1, v2, . . . , vk, ek, vk+1 with

• vi ∈ V for all i = 1, . . . , k + 1,

• ei = (vi, vi+1) ∈ E for all i = 1, . . . , k,

• ei 6= ej for all i 6= j and i, j ∈ {1, . . . , k}.
Obviously, a walk can also be represented as a sequence of vertices or a sequence of edges
(arcs). And if W = (v1, e1, v2, . . . , vk, ek, vk+1) is a walk, then we call v1 and vk+1 as
the endpoints in the undirected case, we call v1 as the start point and vk+1 as the end
point in the directed case. We say a walk is closed if the endpoints (start and end point
in the directed case) are the same. A path is a walk with different vertices, i.e. a walk
(v1, e1, v2, . . . , vk, ek, vk+1) with vi 6= vj for i 6= j. And a circuit or circle is a closed path,
i.e. the underlying walk is closed.

A subgraph G1 = (V1, E1) of G = (V,E) is a graph such that V1 ⊆ V and E1 ⊆ E.
And if V1 = V, we say that G1 is a spanning subgraph of G. Then a spanning walk (path
and circuit resp.) is a walk which contains all possible vertices on G, and a Hamiltonian
circle or tour is a spanning circuit on G.
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Assume G = (V,E) is a graph, and w : E 7→ R is a real function defined on the set of
edges or arcs, then we call the triple (V,E,w) as a weighted graph, and w as a weight
function of graph G.

Suppose G = (V,E) is an undirected graph, we say it is connected if for any two
vertices v1 and v2, we can find a path with v1 and v2 as endpoints. And we say that G
is fully or completely connected if and only if for any two vertices a and b in V, we have
(a, b) ∈ E. Evidently, fully connected implies connected.

In undirected case, a forest is a graph without circuits. And a connected forest is
called a tree. A vertex in a tree with degree 1 is called a leaf. And in the directed case, a
root on a tree is a vertex which has 0 in-degree. Then a branch can be formally defined
as a path which leaves the root and enters a leaf.
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A.2 Shannon Entropy, K-L divergence and importance sampling

This section proposes some terminologies in information theory. Elements in this section
can also be found in Cover et al[CT12] and Rubinstein et al[RK04].

In information theory, Shannon entropy or entropy is the most celebrated measure of
uncertainty. Let X be a random variable with density f . Then the Shannon entropy or
entropy of X is defined as

E(X) := E
[
ln
( 1

f(X)

)]
= −E

[
lnf(X)

]
= −

∫
f(x)lnf(x)dx.

Obviously, if X concentrates on one value, i.e. P(X = a) = 1 for some constant value
a, then E(X) = 0. And if X is uniform distributed, E(X) reaches maximum.

Similarly, we can define the joint or total entropy E(X1, . . . , Xm) of random variables
X1, . . . , Xm with joint density f(x1, . . . , xm) as

E(X1, X2, . . . , Xm) := −
∫
f(x1, x2, . . . , xm)lnf(x1, x2, . . . , xm)dx1dx2 · · · dxm.

It measures the ‘joint’ or ‘total’ uncertainty of random variables X1, . . . , Xm.
For two random variables X1 and X2 with joint density f, we can reasonably define

the conditional entropy of X1 given X2 as

E(X1|X2) := E(X1, X2)− E(X2) = −E
[
ln
f(X1, X2)

fX1(X1)

]
,

where fX1(·) is the marginal density of X1. Note that the conditional entropy measures
the remaining uncertainty when X2 is given.

To measure the mutual dependency of two random variables, we define the mutual
information I(X1, X2) of two random variables with joint density f as

I(X1, X2) := E(X1) + E(X2)− E(X1, X2) = E(X1)− E(X1|X2) = E(X2)− E(X2|X1).

Two basic facts about mutual information is that

• I(X1, X2) = I(X2, X1),

• I(X1, X2) = 0 ⇐⇒ X1 and X2 are probabilistically independent.

The Kullback-Leibler divergence is a ‘metric’ of densities. It can be used to measure
the ‘distance’ of two probability densities. Let g and f be two densities with respect to a
measure µ on a space X. The Kullback-Leibler divergence (K-L divergence) of f respect
to g is

D(f ; g) := Eg

[
ln
g(X)

f(X)

]
=

∫
−g(x)lnf(x)dx−

∫
−g(x)lng(x)dx.

Where Eg(·) indicates that the expectation is respect to density g. It is easy to check
that D(f ; g) ≥ 0, and D(f ; g) = 0 if and only if f = g, µ- almost surely. D(·; ·) is also
called cross entropy or relative entropy.

143



Ph. D Thesis Technical University of Clausthal

A.3 Linear programming and integer programming

Linear programming optimization (LPO, see [KV02] p. 49) concerns solving problems
like

minimizing: cTx,

subject to: Ax ≤ b,
x ∈ Rn,

where matrix A ∈ Rm×n, column vector b ∈ Rm and column vector c ∈ Rn are constant.
A LPO instance is called a linear program (LP). And most of the COPs can be formulated
as LPs.

Integer programming optimization (IPO, see [KV02] p. 91) can be seen as a subtopic of
LPO which concerns solving the LPs with A ∈ Zm×n, b ∈ Zm and x, c ∈ Zn. A more re-
strictive research topic is zero-one integer programming optimization which concentrates
on LPs with A ∈ {0, 1}m×n, b ∈ {0, 1}m and x, c ∈ {0, 1}n. Obviously, zero-one integer
programming is a subtopic of CO. Actually, due to the convexity of feasible regions,
LPO can also be seen as a subtopic of CO.
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A.4 Elements about probability theory and stochastic process

Here, we collect some elements about probability theory and stochastic process, see
[Cin75] and [Dur10] for a further reference.

In probability theory, we call a countable or uncountable set Ω as a sample space.
Then an element in Ω is called as an outcome, and a subset of Ω is called as a random
event .

Let B be a collection of random events on a sample space Ω. We say that B is an
σ-algebra on Ω if and only if

i) it contains complete event i.e. Ω ∈ B,
ii) it is closed under complement i.e. A ∈ B ⇒ Ω−A ∈ B,
iii) it is closed under infinite intersection i.e. ∀n ∈ N An ∈ B, ⇒

⋃
n∈N

An ∈ B.

And we call pair
(
Ω,B

)
as a measurable space if B is a σ-algebra on Ω. For a measurable

space
(
Ω,B

)
, we call each event in B as a B-measurable set. A typical measurable space

is the so-called Borel space. Let Rn = R× · · · × R be the Euclidean space of dimension
n. And Bn denotes the smallest σ-algebra which contains all of open sets in Rn. Then
we call (Rn,Bn) as the n-dimensional Borel space.

Let
(
Ω,B

)
be a measurable space. Let P : B 7→ [0, 1] be a set function such that

i) P(Ω) = 1,

ii) let {An}n∈N be a sequence in B s.t. An ∩Am = ∅ for n 6= m, then

P
[ ⋃
n∈N

An

]
=
∑
n∈N

P
[
An
]
,

then P is called a probabilistic measure on
(
Ω,B

)
, and triple

(
Ω,B,P

)
is called a prob-

ability space.
Given a probability space

(
Ω,B,P

)
. The probability of a random event A ⊆ Ω is

defined as
P(A) := inf

{
P(B)

∣∣ B ∈ B, A ⊆ B},
i.e. the outer measure of A under probabilistic measure P. Note that measurable set
must be a random event, but a random event may not be a measurable set. We say that
two random events A1 and A2 are independent if

P
[
A1 ∩A2

]
= P

[
A1

]
·P
[
A2

]
.

Suppose P(A) > 0 for A ∈ B. Then the probability of a random event B conditioned on
A is defined as

P
[
B
∣∣ A] :=

P
[
A ∩B

]
P
[
A
] .
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A very useful formula about conditional probability is

P
[ ⋂
t∈N

At
]

= P[A0]
∞∏
t=1

P
[
At
∣∣ ∀m ≤ t− 1 Am

]
which is a standard technique for showing the probability of chain events.

Suppose
(
Ω,B

)
is a measurable space. Then we call a function X : Ω 7→ Rn as an

n-dimensional measurable function if for all B ∈ Bn, X
−1(B) ∈ B. In probability theory,

we often call a measurable function X as a random variable. And E = X(Ω) ⊆ Rn is
called the state space of that random variable. For a Borel measurable set B ∈ Bn, and
a probabilistic measure P, we write

P
[
X ∈ B

]
:= P

{
ω ∈ Ω

∣∣ X(ω) ∈ B
}
.

Let X1 and X2 be two random variables, then we say that they are independent if and
only if

P
[
X1 ∈ B1, X2 ∈ B2

]
= P

[
X1 ∈ B1

]
·P
[
X2 ∈ B2

]
for all B1, B2 ∈ Bn.

Let X is an 1-dimensional random variable on a probability space
(
Ω,B,P

)
. Then we

call the function
F(x) := P

[
X ≤ x

]
for all x ∈ R

as the distribution function of X. And if the state space E of X is countable, say
{xi ∈ R | i ∈ N}, its distribution function may be described by a vector

(
P[X = xi]

)
i∈N

i.e.
F(x) =

∑
xi≤x,xi∈E

P[X = xi].

Suppose {(
Ωθ,Bθ,Pθ

)}
θ∈Θ

is a family of probability spaces. We write∏
θ∈Θ

Ωθ :=
{

(ωθ)θ∈Θ

∣∣ ωθ ∈ Ωθ, θ ∈ Θ
}

as the product sample space. Let
∏
θ∈Θ Bθ be the smallest σ-algebra on

∏
θ∈Θ Ωθ which

contains the collection{
C(Aθ1 , . . . , Aθn)

∣∣ Aθ1 ∈ Bθ1 , . . . , Aθn ∈ Bθn , n ∈ N
}
,

where
C(Aθ1 , . . . , Aθn) :=

{
(ωθ)θ∈Θ

∣∣ ωθ1 ∈ A1, . . . , ωθn ∈ Aθn
}
⊆
∏
θ∈Θ

Ωθ.

And define
∏
θ∈Θ Pθ as the unique probabilistic measure on

(∏
θ∈Θ Ωθ,

∏
θ∈Θ Bθ

)
such

that∏
θ∈Θ

Pθ

(
C(Aθ1 , . . . , Aθn)

)
=

n∏
i=1

Pθi(Aθi) for all Aθ1 ∈ Bθ1 , . . . , Aθn ∈ Bn with n ∈ N.
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Then the probability space
(∏

θ∈Θ Ωθ,
∏
theta∈Θ Bθ,

∏
θ∈Θ Pθ

)
is called a product proba-

bility space.
Let M be the collection of all possible 1-dimensional random variables on a probability

space
(
Ω,B,P

)
. Then we say that a function E : M 7→ R is the expectation operator if

and only if it satisfies

i) for all A ∈ B, E
(
1A

)
= P(A),

ii) if Xn → X as n→∞ and Xn ∈M for all n ∈ N, then E(Xn)→ E(X) as n→∞,
iii) for all c ∈ R and X,Y ∈M, E(c ·X) = c ·E(X) and E(X + Y ) = E(X) + E(Y ),

where observe that 1A(ω) ∈M. And note that M is closed under limit. And furthermore,
if Ω is countable, then

E(X) =
∑
ω∈Ω

X(ω)P{ω} for all X ∈M.

Suppose
(
Ω,B,P

)
is a probability space. Let (Xt)t∈Γ be a sequence of random vari-

ables with a common state space E on it. Then we say (Xt)t∈Γ is a stochastic process
with state space E. And if Γ is countable, we say that (Xt)t∈Γ is discrete parameter
process.

Let (Xt)t∈N be a discrete process on
(
Ω,B,P

)
. Then we say that it is a Markov chain

if and only if

P
[
Xt+1 ∈ B

∣∣ Xt ∈ Bt, Xt−1 ∈ Bt−1, . . . , X0 ∈ B0

]
:= P

[
Xt+1 ∈ B

∣∣ Xt ∈ Bt
]

for all t ∈ N, all B ∈ Bn, and also all Bi ∈ Bn for i = 0, 1, . . . , t.
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A.5 Useful notations in runtime analysis

Suppose f and g are two positive functions on natural numbers.

Big O notation:

We write f ∈ O(g) if and only if

∃a > 0 ∃N ∈ N ∀n ≥ N f(n) ≤ a · g(n).

Big O notation is used to show that f is bounded above by g asymptotically. Obviously,
f ∈ O(g) if and only if limn→∞ sup f(n)/g(n) <∞.

Small o notation:

We write f ∈ o(g) if and only if

∀a > 0 ∃N ∈ N ∀n ≥ N f(n) ≤ a · g(n).

f ∈ o(g) means that f is dominated by g asymptotically. And f ∈ o(g) if and only if
limn→∞ f(n)/g(n) = 0.

Big Ω notation:

We write f ∈ Ω(g) if and only if

∃a > 0 ∃N ∈ N ∀n ≥ N f(n) ≥ a · g(n).

So f ∈ Ω(g) means that f is bounded below by g asymptotically. And f ∈ Ω(g) if and
only if g ∈ O(f).

Small ω notation:

We write f ∈ ω(g) if and only if

∀a > 0 ∃N ∈ N ∀n ≥ N f(n) ≥ a · g(n).

f ∈ ω(g) if and only if f dominates g asymptotically.

Big Θ notation:

We write f ∈ Θ(g) if and only if f ∈ O(g) ∩ Ω(g), namely f is bounded both below and
above by g asymptotically.

∼ notation:

We write f ∼ g if and only if they are asymptotically equivalent i.e.

lim
n→∞

f(n)

g(n)
= 1.
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A.6 Application of cross entropy algorithm in rare event simulation

CE is initially motivated for rare event simulation (RES). As an additional reference on
CE, we introduce this in the present Section. For a detailed reference on RES, see the
book [RT+09].

A.6.1 A brief introduction to rare event simulation

Generally, a rare event is an event which occurs with an extremely small probability. For
example, a catastrophic failure for a civil aircraft during a flight is generally a rare event.
As a security or reliability assessment, we may need to calculate or estimate occurring
probabilities of some ‘unpleasant’ rare events for a complex system in practice.

Typically, we may need to calculate a probability

P(A) =

∫
(x1,...,xn)∈Ω

1{f(y1,...,yn)≤γ}(x1, . . . , xn)g(x1, . . . , xn)dx1 · · · dxn (1)

where n ∈ N is a fixed integer and A is a rare event of form[
f
(
X1, . . . , Xn

)
≤ γ

]
(2)

for a fixed threshold value γ ∈ R, random variables X1, . . . , Xn with joint density
g(x1, . . . , xn) and state space Ω, and f : Ω 7→ R is a performance function. Here, an
element x = (x1, . . . , xn) ∈ Ω corresponds to a state for a system, and a failure occurs if
the system is in a state x ∈ Ω with performance value f(x) ≤ γ.

In theory, we can estimate (1) by the so-clalled crude monte-carlo method (see Ap-
pendix A. 2 or [RT+09] pp. 2-4), and the corresponding estimator is

P̂(A) =
1

N

N∑
j=1

1(−∞,γ]

(
f
(
X(j)(1), . . . ,X(j)(n)

))
, (3)

where X(1) =
(
X(1)(1), . . . ,X(1)(n)

)
, . . . ,X(N) =

(
X(N)(1), . . . ,X(N)(n)

)
are i.i.d from

density g. Estimator (3) has a coefficient of variation (c.v.)√
Var

[
P̂(A)

]
E
[
P̂(A)

] =

√(
1−P(A)

)
N ·P(A)

.

When P
(
A
)

is not too small, we can make the above c.v. in a tolerant level by taking
a sufficiently large N. However, the A here is a rare event. To get an effective approxi-
mation to (1), we may need an extremely huge N. For example, P(A) may be smaller
than 10−9, then we have to take an N ≥ 1013 so as to make the c.v. smaller than 0.01.
Obviously, this is prohibitive in practice.

In RES, we concern how to estimate (1) or simulate A effectively for the case that P
(
A
)

is extremely small. Importance sampling and splitting techniques are the most frequently
used approaches in RES. Here, we shall concentrate only on importance sampling. For
the splitting techniques, see [RT+09] Chapter 2 of Part I for an introduction.
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A.6.2 Importance Sampling

Let x = (x1, . . . , xn), y = (y1, . . . , yn) and X = (X1, . . . , Xn). Then, (1) can be written
as

P(A) =

∫
x∈Ω

1{f(y)≤γ}(x)g(x)dx =

∫
x∈Ω

1{f(y)≤γ}(x)
g(x)

h(x)
h(x)dx

= Eh

[
1{f(y)≤γ}(X)

g(X)

h(X)

]
,

(4)

where h is an arbitrary density on Ω with h(x) = 0 ⇒ g(x) = 0 for any x ∈ Ω, and
notation Eh[·] indicates the expectation is taken under density h. Of cause, (4) again
employs the convention 0

0 = 0. (4) is called a change of measure (CoM) with density h.
With that CoM, we may estimate (1) as

P̂(A)|h =
1

N

N∑
j=1

1(−∞,γ]

(
f(X(j))

)g(X(j))

h(X(j))
(5)

with X(1), . . . ,X(N) i.i.d from h(·). Obviously, the c.v. of (5) is

√
Varh

[
P̂(A)|h

]
Eh

[
P̂(A)|h

] =

√
Varh

[
P̂(A)|h

]
P(A)

=

√
Eh

[
1{f(y)≤γ}(X) g(X)

h(X)

]2
−
[
P(A)

]2

√
N ·P(A)

. (6)

By the well-known Jensen’s inequality [Jen06], whenever h equals to

g∗(x) =
1{f(y)≤γ}(x)g(x)∫

z∈Ω 1{f(y′)≤γ}(z)g(z)dz
=
1{f(y)≤γ}(x)g(x)

P(A)
for all x ∈ Ω, (7)

the c.v. in (6) reaches the minimal value 0. We often call g∗ as the zero variance change
of measure.

Ideally, we may use g∗ as a CoM in (4). Then the resulted estimator in (5) shall have
a 0 c.v.. Unfortunately, this is infeasible in practice, since g∗ has the unknown quantity
P(A) as dominator. A clever alternative approach was proposed by R. Y. Rubinstein
in [Rub97]. It first specifies a family of densities PIS = {g(·; θ) : θ ∈ Θ} such that we
can easily draw samples from each g(·; θ). Then, it employs a search in PIS for a density
which ‘mimics’ g∗ best. Finally, it uses the ‘optimal’ density found in PIS as a CoM in
(4), and estimates P(A) by the corresponding estimator in (5). Since the density found
by the search may approximate g∗ well, the resulted estimator can be effective enough.
To achieve the idea, a metric or criterion for determining the ‘similarity’ or ‘distance’
between densities is needed. R. Y. Rubinstein proposed two possible criterion in [Rub97]
and [Rub99], namely variance minimization (VM) and K-L divergence (Kullback-Leibler
distance or divergence, see A. 2 in the Appendix). With a fixed criterion, the search
generally results in an iteratively stochastic procedure in Θ. Below, we shall employ K-L
divergence as an example.
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A.6.3 Application of cross entropy in rare event simulation

Now, we fix a family PIS = {g(·; θ)|θ ∈ Θ} such that each g(·; θ) is a density function on
the state space Ω for θ ∈ Θ, and there is a θ0 ∈ Θ with g(·) = g(·; θ0).

Generally, the K-L divergence of a density h to another density k is

D
(
h; k
)

= −
∫
x∈Ω

k(x)lnh(x)dx+

∫
x∈Ω

k(x)lnk(x)dx.

It has properties as following:

• D
(
h; k
)
≥ 0 for all h, k;

• D
(
h; k
)

= 0 if and only if f = g holds almost surely.

See A. 2 in the Appendix for an explanation. Therefore, we can find out a best approx-
imation g(·; θ∗) with θ∗ ∈ Θ for g∗ by solving

minθ∈Θ D
(
g(·; θ); g∗

)
= minθ∈Θ

{
−
∫
x∈Ω

g∗(x)lng(x; θ)dx+

∫
x∈Ω

g∗(x)lng∗(x)dx
}
.

Observe that ∫
x∈Ω

g∗(x)lng∗(x)dx

is a constant. By (7), we may equivalently solve

minθ∈Θ −
∫
x∈Ω

g∗(x)lng(x; θ)dx ⇐⇒ maxθ∈Θ

∫
x∈Ω

g∗(x)lng(x; θ)dx

⇐⇒ maxθ∈Θ

∫
x∈Ω

1{f(y)≤γ}(x)g(x)

P(A)
lng(x; θ)dx

instead. Note that P(A) is a constant, we can solve

maxθ∈Θ

∫
x∈Ω

1{f(y)≤γ}(x)g(x)lng(x; θ)dx ⇐⇒ maxθ∈Θ Eθ0

[
1{f(y)≤γ}(X)lng(X; θ)

]
(8)

for an optimal θ∗ ∈ Θ, where recall that g(x) = g(x; θ0) and Eθ0 [·] is the expectation
under density g(·; θ0).

In practice, it is often impossible for us to solve (8) deterministically. In [Rub99], an
iteratively stochastic search procedure was proposed for solving (8) . And with a minor
change, the procedure then become the CE algorithm on p. 19. This is also why we say
that CE algorithm is initially motivated for RES. Formally, the procedure results in a
stochastic process (θt; γt; Xt)t=0,1,2,... with

• Xt =
(
X

(1)
t , . . . ,X

(N)
t

)
is a random sample of a specified size N from density

g(·; θt), where each X
(j)
t = (X

(j)
t (1), . . . ,X

(j)
t (n)) ∈ Ω for j = 1, . . . , N ;

• γt = f(X
(mbα·Nc)
t ) where α ∈ (0, 1) a not very small constant, and X

(m1)
t , . . . ,X

(mN )
t

is the increasing order of Xt according to the performance function f i.e.

f(X
(m1)
t ) ≤ f(X

(m2)
t ) ≤ · · · ≤ f(X

(mN )
t ),
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• θ0 ∈ Θ is fixed such that g(·) = g(·; θ0) and θt+1 ∈ Θ is a solution of

maxθ∈Θ
1

N

N∑
j=1

1{f(y)≤γt}(X
(j))

g(X
(j)
t ; θ0)

g(X
(j)
t ; θt)

lng(X
(j)
t ; θ). (9)

Note that (9) is a stochastic counterpart of

maxθ∈ΘEθt

[
1{f(y)≤γt}(X)

g(X; θ0)

g(X; θt)
lng(X; θ)

]
⇐⇒ maxθ∈ΘEθ0

[
1{f(y)≤γt}(X)lng(X; θ)

]
(10)

when θt and γt is given, since X
(1)
t , . . . ,X

(N)
t is i.i.d from g(·; θt) and

Eθ0

[
1{f(y)≤γt}(X)lng(X; θ)

]
= Eθ′

[
1{f(y)≤γt}(X)

g(X; θ0)

g(X; θ′)
lng(X; θ)

]
for any θ′ ∈ Θ. With γt instead of γ in equations (4)-(8), we know that g(·; θt+1) is an
approximation of

g∗t (x) :=
1{f(y)≤γt}(x)g(x; θ0)∫

z∈Ω 1{f(y′)≤γt}(z)g(z; θ0)dz
for all x ∈ Ω

whenever γt is fixed. Therefore, if we can make γt gradually approximate γ, then we
can finally reach an optimal θ∗ ∈ Θ. As a reference, we write this procedure in Figure 1
on p. 154. The procedure can be seen as an application of the CE algorithm on p. 19
to the field RES. It differs with its counterpart in CO in the update of model. For the
case of RES, we use (9), since we aim to estimate P(A) and (10) shows an equivalence.
However, for the case of CO, we estimate an empirical model Wt = g(·; θt+1) by

maxθ∈Θ
1

N

N∑
j=1

1{f(y)≤γt}(X
(j))lng(X

(j)
t ; θ).

and then we construct the next model Πt+1 as a convex combination of the present
model Πt and Wt+1, where we identify Θ as Pce and g(·; θ) as θ for each θ ∈ Pce. For a
more detailed explanation, see [Rub99].

Let {γ∗t }t∈N and {θ∗t }t∈N be two sequences satisfying

• θ∗0 = θ0 ∈ Θ,

• γ∗t is the theoretical value such that Eθ∗t

[
1{f(y)≤γ∗t }(X)

]
= α,

• θ∗t+1 ∈ Θ is the theoretical solution to

maxθ∈ΘEθ0

[
1{f(y)≤γ∗t }(X)lng(X; θ)

]
,

for t = 0, 1, . . . . Obviously, γt and θt are estimators of γ∗t and θ∗t respectively for each
t ∈ N. Let Γ : Θ 7→ R be a map such that Γ(θ) is the theoretical value such that

Eθ

[
1{f(y)≤Γ(θ)}(X)

]
= α

for each θ ∈ Θ. Then γ∗t = Γ(θ∗t ) for each t ∈ N. D. Lieber shows in his Thesis [Lie98]
that
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Lemma 8.1 (see also Theorem 1.1 in [Rub99]). Assume that for each real number c ∈ R,
there is a unique solution to

maxθ∈ΘEθ0

[
1{f(y)≤c}(X)lng(X; θ)

]
,

and we use η(c) ∈ Θ to denote the unique solution (θ∗t+1 = η(γ∗t )). And suppose further
that

• {γ∗t }t∈N is monotonically increasing,

• the map Γ : Θ 7→ R is continuous,

• the map η : R 7→ Θ is proper, i.e. if c belongs to an interval, then η(c) belongs to
a compact set,

• the map Γ
(
η
(
Γ(θ)

))
− Γ(θ) is semi-continuous.

Then

lim
N→∞

P
[
γ0 > γ1 > γ2 > · · · > γt > · · ·

]
= 1 and P

[
∃t ∈ N, γt ≤ γ

]
= 1.

Proof. see [Lie98].

Lemma 8.1 actually shows that under some ‘mild condition’, the procedure in Figure
1 may stop with an optimal θ∗ ∈ Θ in finite many iterations if a suitable sample size is
employed.
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Algorithm Cross entropy algorithm for rare event simulation

parameters:
parametric family PIS = {g(·; θ)|θ ∈ Θ}, an α ∈ (0, 1) not very small, a
sample size N.

algorithm:

a) Generate random sample X
(1)
t , . . . ,X

(N)
t i.i.d with g(·; θt), and or-

der them according to f as f(X
(m1)
t ) ≤ · · · ≤ f(X(mN )), set

γt = f(X
(mbα·Nc)
t );

b) Solve

maxθ∈Θ
1

N

N∑
j=1

1{f(y)≤γt}(X
(j))

g(X
(j)
t ; θ0)

g(X
(j)
t ; θt)

lng(X
(j)
t ; θ)

and denote the solution as θt+1;

c) while (γt > γ)

c 1) t = t+ 1;

c 2) repeat step a)-c);

d) output θt;

Figure 1: Cross entropy algorithm for rare event simulation
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A.7 Genetic algorithms, simulated annealing and particle swarm
optimization

A.7.1 Genetic algorithms

GAs are inspired by the natural evolution of genes of creatures. For a tutorial and
overview, see [Mic96] and [Whi94].

In GAs, problems are generally unconstrained 0-1 encoded. Therefore, we may assume
an instance (S, f) here with S = {0, 1}L for an L ∈ N.

Different from MBS, in GAs we call a collection of feasible solutions as a population.
The input parameters for GAs are: a fixed parent population size N ∈ N, a fixed
offspring population size M ∈ N, a constant mutation rate rm ∈ (0, 1). The initial
parent population P0 are uniformly sampled from S. And, in each sequent iteration t, a
fixed selection strategy is employed to choose M/2 pairs of solutions from Pt. After that,
a crossover operator applies on each pair to produce two offspring, and each offspring
may encounter a mutation with probability rm. Here, we employ Ot to denote the
resulted collection of offspring. Then, N many solutions in Ot ∪Pt would be selected to
form Pt+1 by a fixed population update strategy.

In GAs, typical selection strategies are the roulette selection and tournament selection.
In a roulette selection, we randomly pick out M many solutions from Pt by probabilities
proportional to qualities of solutions. Then, the first pair is formed by the first and
second selected solutions, the second pair is formed by the third and fourth selected
solutions and so on. Tournament selection is similar with a real tournament competition
with a fixed group size.

A crossover operator can be mathematically formulated as a random function which
takes in two parents and outputs two children. Here, we take 1-point crossover as an ex-

ample. Given two solutions s(1) = (s
(1)
1 , s

(1)
2 , . . . , s

(1)
L ) and s(2) = (s

(2)
1 , s

(2)
2 , . . . , s

(2)
L ), and

a randomly picked crossover point j from {1, . . . , L}. Then 1-point crossover produces
two offspring as

o(1) = (s
(1)
1 , . . . , s

(1)
j , s

(2)
j+1, . . . , s

(2)
L ) and o(2) = (s

(2)
1 , . . . , s

(2)
j , s

(1)
j+1, . . . , s

(1)
L ).

A typical mutation operator in GAs is the 1-flip. Given a solution (s1, . . . , sL) as well
as a random flip position i. Then 1-flip will mutate the solution into

(s1, . . . , si−1, 1− si, si+1, . . . , sL).

A population update strategy generally tells how to form the next parent population
from the current parent population and current offspring population. Typical update
strategies may be the so-called λ+µ rule and (λ, µ) rule. In λ+µ rule, we will take the
best N many solutions in Pt∪Ot as the next population Pt+1. In (λ, µ) rule, Pt+1 would
be a random subsample from Ot with selection probabilities proportional to qualities of
qualities.

As a summary, we list the general GA algorithm in Figure 2 on p. 156.
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Algorithm Genetic algorithm

a) randomly select N solutions as initial population P0;

b) set t = 0 and a stop criterion STOP ;

c) select M/2 pairs of solutions from Pt;

d) for each pair, do crossover and collect the offspring in Ot;

e) for each solution in Ot, draw a random variate u from U [0, 1], if u < rm,
do mutation;

f) build Pt+1 from Ot ∪ Pt with a population update strategy;

g) while STOP does not hold

g 1) t = t+ 1;

g 2) repeat steps c)− g);

Figure 2: Genetic algorithm

A.7.2 Simulated annealing

Roughly speaking, an LS algorithm starts with a randomly chosen solution, and then it-
eratively searches a neighborhood for a possible improvement, see [AL97] for an overview
of LS in CO. Among those LS algorithms, simulated annealing is the most well-know
one.

Simulated annealing generally has two technical components: a neighborhood structure
and a temperature decreasing rule. Given a CO instance (S, f), a neighborhood can be
mathematically stated as a function N : S 7→ {B : B ⊆ S}. Neighborhoods are used
to restrict the search in each iteration. I.e. in iteration t, a neighbor Yt would be
randomly picked out from the neighborhood N (Xt) where Xt is the current solution. A
temperature decreasing rule is used to update the present temperature. Figure 3 on p.
157 lists the pseudo code for simulated annealing.

Typical examples of neighborhoods are the various kinds of position-exchanges, see
[AL97] pp. 4-10 for a reference. In simulated annealing, the present solution is update
according to the acceptance/rejection criterion,

Xt+1 :=


Yt if f(Yt+1) ≤ f(Xt),

Yt if f(Yt+1) > f(Xt) and u ≤ exp
(f(Xt)−f(Yt)

Tt

)
,

Xt otherwise,

(11)

where Tt is the current temperature, u is a random variate from U [0, 1].
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Algorithm Simulated annealing

a) randomly choose an X0 from S, and fix an initial temperature T0;

b) set t = 0 and a stop criterion STOP ;

c) randomly choose an Yt from N (Xt);

d) choose Xt+1 from {Xt, Yt} according to (11);

e) update temperature;

f) while STOP does not hold

f 1) t = t+ 1;

f 2) repeat steps c)− f);

Figure 3: Simulated annealing

A.7.3 Particle swarm optimization

Particle swarm optimization (PSO, [KE95]) simulates the collective behavior of a school
of fishes or birds. It generally assumes a continuous search space S. It employs a fixed
number of agents iteratively searching on S. Initially, the agents randomly construct a
starting position (solution) on S. In each subsequent iteration, the agents move their
present positions towards their own best positions and the global best position. The
agents iteratively move their positions as following:

Initialization Randomly generate a swarm of positions of a fixed size N :

xi = (xi,1, . . . , xi,d) ∈ S, i = 1, . . . , N,

where d is the dimension. Initialize the N velocity vectors

v0
i = (v0

i,1, . . . , v
0
i,d) ∈ Rd, i = 1, . . . , N.

Let bi denote the best position where agent i experienced, and b denote the global
best position the swarm has ever visited so far. Take an inertia parameter e, and
cognitive parameter c1 and a social parameter c2 from [0, 1].

Update Local and Global Information If it is the first iteration, then bi = xi and b is
the best position in the first swarm. Otherwise, if xi is better than bi, set bi = xi.
And if b is worse than the best position in the current swarm, set b to be that
position.
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Update Velocity Generate two random numbers r1, r2 uniformly from [0, 1] and update
velocities with the following form:

vt+1
i = e · vt + r1 · c1 · (bi − xi) + r2 · c2 · (b− xi), (12)

for each i = 1, . . . , N.

Update Position Each position is updated by

xi = xi + vt+1
i , (13)

for i = 1, . . . , N.

Although PSO is initially designed for continuous optimization, some recent literature
have successfully applied it to combinatorial optimization, see e.g. [WHZP03]..
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Index

σ-algebra, 145
∼ notation, 148

algorithm, 10

big Ω, 148
big Θ, 148
Borel space, 145
bounded above (big O), 148

change of measure, 150
combinatorial optimization, 6–9

elements, 6–7
feasible set, 6
feasible solution, 6
instance, 6
maximizing instance, 6
maximizing problem, 8
minimizing instance, 6
minimizing problem, 8
objective, 7
objective function, 6
objective value, 6
optimal solution, 6
optimum, 7
problem, 8

examples, 8–9
AP, 9
KP, 9
MaxCut, 9
TSP, 8

conditional entropy, 143
conditional probability, 145
constant learning rate, 63
cut, 9
cutting benefit, 9

expectation, 147
exponential runtime, 69

feasible under feasibility distributions, 75

genetic drift, 100
graph, 141

branch, 142
circuit or circle, 141
connected graph, 142
directed graph, 141
forest, 142
fully or completely connected, 142
Hamiltonian circle, 141
leaf, 142
path, 141
root, 142
spanning graph, 141
subgraph, 141
tree, 142
undirected graph, 141
walk, 141
weighted graph, 142

Heuristic search, 10–12

Kullback-Leibler, 143
Kullback-Leibler (K-L) distance or di-

vergence, 150

linear programming, 47
linear programming

integer programming, 144
linear program, 144
zero-one integer programming, 144

linear programming optimization, 144
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Markov chain, 147
measurable function, 146
measurable set, 145
measurable space, 145
model mutation, 42
model-based search, 11, 13–66

a unified model family, 50
absorbing solution, 98
absorption of models, 98
absorption of solutions, 98
alphabet, 46
ant colony optimization, 23–32

ant cycle, 24
archive, 31
assessment function, 27
choice probability, 28
construction graph, 25
evaporation rate, 27
feasible continuation, 26
global evaporation rate, 31
global update, 31
legal walk, 26
local evaporation rate, 31
local update, 30
model family, 30
out rule, 32
partial legal walk, 26
pheromones, 23
pheromones matrix, 30
pseudo random proportional rule,

30
visibility, 29

basic recursion, 58
basic requirement, 14
compatible to feasibility distributions,

75
compatible to optimal solution, 70
concatenation, 47
concentrated solution, 98
constrained instance, 46
constraints, 49
cross entropy algorithm, 16–21

model family, 17
parameters, 18

penalty objective value, 16
smooth parameter, 18
variants, 20

empty string, 47
estimation of distribution algorithms,

37–44
choice rule, 40
learning rate, 42
memory, 40
memory update rule, 40
model family, 37
model mutation, 42
random shift, 43

extension, 47
feasibility distribution, 51
finite reachability, 69
framework , 57–58
global truncate memory update, 59
greedy feasibility construction, 51
identity selection, 60
initial model, 14
leading partial solution, 65
leading string, 47
length of a string, 47
limit of the models, 98
local truncate memory update, 59
Markov property, 66
memory identity selection, 60
memory random selection, 60
motivation, 14–15
multivariate marginal models, 13
non-greedy feasibility distribution or

construction, 51
non-memory update, 59
problem size, 69
random selection, 60
relative efficiency, 138
runtime, 69
search capacity, 133
single-start local search, 15
solutions’ length, 46
string encoding or representation, 46
tail property, 107
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time dependent weighted learning,
61

truncate selection, 60
unconstrained instance, 46
underlying stochastic process, 64
uniform learning, 60
univariate marginal models, 13
weighted learning, 61

mutual information, 143

outcome, 145

probabilistic independence, 145

random event, 145
random variable, 146

sample space, 145
Shannon entropy, 143
small ω, 148
small o, 148
solutions-based search, 11
stagnation, 100
state space, 146
stochastic process, 147
strategy, 63
surrogate probability, 75

total cost, 9
total entropy, 143
traveling cost, 8

variance minimization, 150

worst out, 59

zero variance change of measure, 150
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