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Abstract

We consider a network of periodically running railway lines. Investments are possible to increase the speed
and to improve the synchronisation of trains. The model also includes random delays of trains and the
propagation of delays across the network. We derive a cost-benefit analysis of investments, where the
benefit is measured in reduced waiting time for passengers changing lines. We also estimate the actual mean
waiting time simulating the train delays. This allows us to analyse the impact that an increasing
synchronisation of the timetable has on its stability. Simulation is based on an analytical model obtained
from queueing theory. We use sophisticated adaptive evolutionary algorithms, which send off avant-garde
solutions from time to time to speed up the optimisation process. As there is a high correlation between
scheduled and estimated waiting times for badly synchronised timetables, we are even able to include the
time consuming simulation into our optimisation runs.

Keywords: railway network; timetable optimisation; simulation of delays; evolutionary algorithms; multi-criteria

optimisation; simulation and optimisation

1 Introduction

To analyse the performance of a railway network is a very complex task. In this paper we show
how timetable optimisation can help to solve this problem.
We consider a network of railway lines that run periodically according to a timetable T.

Timetables are optimised with respect to several cost criteria reflecting different aspects of their
performance. The resulting optimal cost values and optimal solutions (timetables) then show the
interdependence of the criteria, and may yield cost-benefit analyses.
The first cost criterion for a timetable T is the total scheduled waiting time W(T). This is the

total time all passengers have to wait according to T either at stations when changing lines, or in
the train during stops. An exact definition follows below. We then extend the network model to a
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model of strategic investment decisions: investments can be made in the tracks to speed up the
trains. This will allow a better synchronisation of trains at stations reducing the waiting time
W(T). Let C(T) denote the total investment required by a timetable T, see details below.
We may now try to find the Pareto-optimal timetables with respect to the two cost functions

W( � ), C( � ). A timetable T is called Pareto-optimal (or non-dominated) if there is no timetable T0

with

WðT 0Þ<WðTÞ and CðT 0Þ<CðTÞ:

that is, there is no T0 which has less waiting time and less investment costs than T. The cost
function values of the Pareto-optimal solutions in the (W( � ), C( � ))-plane will then yield a cost-
benefit-curve. See Fig. 1(a) for an example. Here, the hatched region denotes the cost function
values of all timetables, the Pareto-optimal timetables belong to the bold curve. From this curve
one may, for example, see the minimal scheduled waiting time that is enabled by an investment of
c euro. The underlying Pareto-optimal timetable contains exact information on where the waiting
time occurs and where the money has to be invested (see details in Section 2 below).
In the practical operation of a network, small delays to trains are probably inevitable, therefore

another reasonable requirement for timetables is that they should be ‘stable’. We measure the
stability of a timetable T by its mean actual total waiting time V(T) under random delays of trains,
and include V( � ) as a third cost function into our optimisation model.
How will the scheduled waiting time W(T) and the mean actual waiting time V(T) be related? A

scheduled waiting time at a station is a waste of time from the perspective of the traveller, but it
also serves as a time buffer for the delays of trains. Therefore, one should expect that for
timetables T with larger values ofW(T), delays do not affect actual waiting times so that the mean
actual waiting time V(T) will be of similar size as the scheduled time W(T). Timetables T with
W(T) � V(T) are regarded as stable, in Fig. 1(b) this is illustrated by the right side of the graph.
During the optimisation process, timetables with reduced scheduled waiting time are found. Here,
the time buffers at stations are becoming smaller and the chance to miss a connection when
arriving in a delayed train increases. Therefore, one should expect that the mean actual waiting
time also increases or is at least not reduced at the same rate as W(T). This is indicated in the left
side of Fig. 1(b) (see also Fig. 6 below for empirical evidence of this tendency).

Fig. 1. (a) The Pareto-optimal solutions form a cost-benefit-curve. (b) Mean actual and scheduled waiting time are

highly correlated for badly synchronised timetables.
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When investments are made to increase the synchronisation of the trains and to reduce the
scheduled waiting time W(T), the point G in Fig. 1(b) is of particular interest. Beyond G,
additional investments into the synchronisation of trains have decreasing benefit as they lead to
unstable timetables. Further investments should then be made to improve the reliability of the
operational times, for example, by additional tracks parallel to others. In the present paper
however, we only consider investments into existing tracks that reduce the running times of trains.
This will not affect the occurrence of delays but only their reduction by time buffers (see below).
Hence, the question here is the balance of acceleration and synchronisation against stability at a
given level of random disturbances.
Figure 1 shows ideal situations. In practice, the networks are much too complex to obtain exact

Pareto-optimal solutions even in the case of the two simple cost functions W and C. At present,
we are not able to calculate the mean actual delay V(T) analytically for realistic delay distributions
and networks of realistic size. Therefore we have to replace the exact value by an estimate (which
we shall also call V(T)) obtained from computer simulation.
A cost function that can only be simulated excludes all classical mathematical optimisation

strategies, therefore we used sophisticated evolutionary (genetic) algorithms instead. As a
consequence, our solutions are only approximating the Pareto-optimal set and instead of the
complete cloud of cost function values as in Fig. 1, we shall only see samples of it as they appear in
the optimisation process.
We developed an adaptive multi-objective genetic algorithm which is enhanced by additional

features. First we use ‘avant-garde’ breeding. This operation produces single offspring solutions that
tend to run ahead of the rest of the population. The population then inherits the good properties from
this solution in just a few generations. A further acceleration is obtained by exploiting the correlation
between the two waiting-time cost functions W(T) and V(T). As simulation is very time-consuming
(compared to the calculation of the scheduled waiting time W(T)), the cost function V(T) is switched
off during early optimisation stages. From time to time it is switched on to check the correlation
between W(T) and V(T) in the present population. If this correlation is low, simulation is used more
often. This turned out to be sufficient to obtain pictures like Fig. 1(b) and rough estimates of G.
Our model is based on earlier work of Nachtigall (1996, 1998) and Nachtigall and Voget (1997).

Investigations into timetable optimisation are also reported in Zimmermann and Lindner (2003).
Delays are considered in a slightly different set up in Goverde (1998, 2002), where the so-called
max-plus approach is used to model the propagation of a single delay situation and to evaluate
the efficiency of counter-measures.
The structure of the paper is as follows. In Section 2 we describe the railway network and its

deterministic mathematical model in some more detail. Section 3 shows how random delays are
incorporated into this model. The genetic algorithm and its refinements are presented in Section 4
together with some empirical results with real railway networks. The final Section contains some
conclusions.

2 The railway network and its mathematical model

We consider a network with a common period of t minutes. Let S1; . . . ;SK denote the stations of
the network and L1; . . . ;LM its lines, where a line is defined by the sequence of consecutive
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stations it serves (every t minutes). A timetable T consists of two lists: a list of departure times
pðS;LÞ; 0)pðS;LÞ<t, for each pair (S, L) such that line L runs through station S, and a list of
running times d(S, S0) such that stations S, S0 are neighbouring stations in at least one line.
To simplify matters, we neglect problems of starting and closing daily operation and simply

assume that trains are running continously every t minutes. Thus, line L leaves station S every t
minutes with one train leaving at p(S, L) minutes past midnight. It then needs d(S, S0) minutes to
arrive at the next station S0. Note that the running time between two stations is prescribed by the
timetable.
We model the network at a rather general level without details like safety distances and capacity

restrictions. This reduces the complexity considerably and is justified at least in a strategic
planning situation where for example, the track layout is of no concern. (See Engelhardt-Funke
and Kolonko, 2001, for more details on the model.)
We may now formally define the scheduled total waiting time

WðTÞ :¼
X

ðS;L;L0Þ
wTðS;L;L0Þ � gðS;L;L0Þ ð1Þ

where the sum is over all triplets (S, L, L0) that denote a possible change from line L to line L0 at
station S. wTðS;L;L0Þ is the scheduled time a passenger has to wait for the next arrival of line L0

after he has arrived with line L at station S. If L5L0 then wTðS;L;LÞ is the duration of the
scheduled train stop at station S. In both cases this is the ‘pure’ waiting time, without transfer
times like the time necessary to change platforms, and for boarding and alighting trains. g(S, L, L0)
is a weighting function, for example, the estimated mean number of passengers that use connection
(S, L, L0). It may also be used to put an additional penalty on the waiting time spent on a platform
compared to the waiting time spent in a train during stops. Note that W(T) is computed on the
basis of the scheduled times given in timetable T.
We now further extend the model of train operation to a model of strategic investment

planning. We assume that investments into the tracks of the network are possible for example, by
rebuilding a crossing or improving a switch, and that these improvements shorten the running
time of trains on that section. More precisely, we assume that for each section there is a catalogue
of possible improvements including their costs and the acceleration obtainable on that section.
A timetable T fixes a certain running time d (S, S0) on each section (S, S0) which may require

some investment for its realisation. Let cðS;S0ÞðtÞ denote the amount of money that has to be
invested into section (S, S0) according to the catalogue to allow a running time of t minutes on
ðS;S0Þ � cðS;S0Þð�Þ will usually be a step function as in Fig. 2, where each step is connected to a
particular investment. If there is no possibility to improve (S, S0) then cðS;S0ÞðtÞ will be zero for the
present running time t ¼ t1ðS;S0Þ and infinity for all t< t1ðS;S0Þ.
The total investment cost required by timetable T (i.e. by the running times d(S, S0) contained

in it) is defined as

CðTÞ :¼
X
ðS;S0Þ

cðS;S0Þ dðS;S0Þð Þ ð2Þ

where the sum runs over all pairs of neighbouring stations S, S0.
Note that in our model, timetable T contains a detailed investment plan of total amount

C(T). A decision to invest a certain sum c into the network allows us to run the network with the
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Pareto-optimal timetable T that has CðTÞ)c;CðTÞ maximal. W(T) evaluates the impact that all
investments required by T have on the waiting times across the whole network. This includes the
(possibly negative) effects that an acceleration of trains on one section may have on connections at
stations along the line.
During the optimisation process, equations (2) and (3) have to be computed very often. It is

therefore reasonable to reduce the complexity of the network as far as possible. As waiting times
can occur only at stations where at least two lines cross and passengers can change lines, we may
drop all other ‘non-changing’ stations from the model. Let S, S0 be two changing stations on a line
with only non-changing stations ~SS1; . . . ; ~SSn between them. Then all sections ð ~SSi; ~SSiþ1Þ between two
neighbouring non-changing stations are aggregated to form one new ‘super-section’ (S, S0). The
catalogue of possible investments for this super-section has to be built from the aggregated ones
by carefully folding the cost functions cð ~SSi; ~SSiþ1Þð�Þ into a new function cðS;S0Þð�Þ. (See Engelhardt-
Funke and Kolonko, 2001; Nachtigall and Voget 1997, for more details on this point.)
In the next Section we introduce random delays into our model.

3 Timetables under random delays

The real operation of trains will hardly ever be in complete accordance with the timetable due to
unavoidable small disturbances like technical failures, construction sites along the tracks or delays
at stations during boarding. Note that we do not consider large deviations from the timetables
caused for example, by heavy accidents.
Delays may accumulate during a train journey and may be propagated to connecting trains of

other lines. Modelling the propagation of delays is a most complex task for which we use
computer simulation. For the accumulation of delays along a line, however, we can give an
approximate analytical solution which may then be used to speed up the simulation.

3.1 The distribution of delays

We want to derive an analytical expression for the distribution of the resulting delay at the end of
super-sections in the aggregated network (see Section 2 above). In particular, we have to model

Fig. 2. A simple local cost function cðS;S0Þð�Þ.
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how delays may be reduced. Here we use a slightly simplified version of the mechanisms actually
applied in the German railway system.
We assume that delays on sections are caused by stops at random places of random duration

and that delays at stations are additional stopping times of random length.
There are two types of time buffers to reduce these delays. First, trains may increase their

speed as soon as they are delayed to make up for the delay. In other words, the scheduled
running time d(S, S0) contains a small time buffer that may be used to reduce delays before the
next station is reached. In our simulation experiments we assumed that the length of this buffer
is fixed for each super-section (S, S0) independently of the timetable. Another time buffer may be
contained in the stopping times at stations, as the departure time p(S, L) scheduled in timetable
T may be larger than the arrival time plus the necessary transfer time. This additional stopping
time is denoted wTðS;L;LÞ (see equation 1). Both these types of buffers reduce the delay of a
single train.
For a further simplification, we assume that along a super-section all delays are caused by stops

of independent and identically distributed (iid.) random length and that the distances between
these stops also form an iid. sequence. This is justified if the number of non-changing stations is
large and if the delays at stations are more important than the delays acquired during driving (as
is the case in practice).
Then the accumulation and reduction of delays along the super-section can be modelled as

a queueing system: the occurrence of a single delay can be viewed as the arrival of a customer
that brings its duration as workload to the server (train). The service consists of reducing the
delay by increasing the speed of the train. Queueing theory gives expressions of the workload
lying ahead of the server (the so-called virtual waiting time), which in our case is the
remaining accumulated delay. Let D(S, S0) denote this resulting delay of a train at the end of
a super-section (S, S0) provided the train started as scheduled in S. See Fig. 3 for a typical
picture.
If the distances between consecutive disturbances and the duration of the stops are iid.

exponentially distributed with parameters l and m respectively, and if all random variables are

Fig. 3. On the journey from S to S0, random stops of duration K1;K2;K3 occur at O1;O2;O3 resulting in a delay

D(S, S0).
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independent from each other, then D(S, S0) has approximately (for long super-sections (S, S0)) the
following distribution

PðDðS;S0Þ)tÞ ¼
1� l

cm if t ¼ 0
l
cmð1� e�tðm�l=cÞÞ if t > 0

(
: ð3Þ

Here,

c :¼ 1

normal speed
� 1

maximal speed
ð4Þ

is the rate at which delays can be reduced during driving. Note that 1� l=cm is the probability of
arriving in time and 1� e�tðm�l=cÞ is the conditional distribution function of the delay given the
train is delayed. A similar result holds under more general assumptions on the process of
disturbances (see Engelhardt-Funke and Kolonko, 2000; Engelhardt-Funke, 2002, for details).
These analytical results are in good accordance with empirical data. (See Herrmann, 1996 and
Mühlhans, 1990, for the German railway system.)
Next we want to include an initial delay B(S, L) of a train of line L when leaving station S for

the super-section (S, S0). In the queueing context, it can be reduced at rate c whenever the server is
‘idle’, i.e. there is no other delay. From queueing theory we know that asymptotically, this is the
case for a fraction of 1� l

cm of the running time. Therefore, at the end of the super-section (S, S0)
the initial delay B(S, L) has been reduced to

BðS;LÞ � cs 1� l
cm

� �� �þ
ð5Þ

where s is the length of (S, S0) and [ � ]1 denotes the positive part. As a result we obtain the
following approximate expression for the total delay of a train of line L at the end of super-section
(S, S0)

AðS0;LÞ :¼ DðS;S0Þ þ BðS;LÞ � cs 1� l
cm

� �� �þ
: ð6Þ

Note that in our model, the super-section (S, S0) is determined by its terminal S0 and the line L.
Equation (6) allows to treat the super-sections in the aggregated model as one object during
simulation without having to keep track of all disturbances. The determination of the initial delay
B(S, L) at changing stations has to take into consideration all delays propagated from feeder
trains.
In our simulation model we assumed that the intensity and frequency of the single delays

emerging along super-sections and at stations are not affected by the timetable or investments.
This means in particular, that even if the running times on (S, S0) are shortened by an investment,
we assume that the rate c given by (4) and the length of the buffer sc for that super-section remain
constant. This may seem a little unrealistic but simplifies simulation as the underlying data do not
have to be adapted to each new timetable. However, timetable and investments do have an impact
on the way delays are reduced by the time buffers wTðS;L;L0Þ.
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3.2 The actual waiting time

To reduce the propagation of delays from one train to another, time buffers wTðS;L;L0Þ at
changing connections (S, L, L0) are needed. This is the (scheduled) time between the arrival of line
L at station S and the departure of line L0 from S minus the necessary transfer time. To further
limit the absolute amount of propagated delay, there is a so-called ‘connection control limit’ k.
This is the maximal time a connecting train has to wait for its delayed feeder train, possibly
depending on the type (importance) of the connections.
The time buffers wTðS;L;L0Þ determine the cost function ‘scheduled waiting time’ W(T) as

given by (2.1). Minimisation of W(T) will decrease these buffers and may lead to an unstable
system as the actual waiting time of passengers increases due to missed connections. Therefore,
optimisation of timetables should also take into account the resulting actual waiting time of
passengers.
There are different ways to formally define such a cost function. In Goverde (2002) the exact

waiting time of a passenger is taken, that is, the time from the arrival (on a possibly delayed train)
until the (possibly delayed) departure. This may result in actual waiting times that are less than
the scheduled ones, for example, if for a connection with a large scheduled waiting time the
arriving train is late but just reaches the connecting train (which may be delayed itself ). In some
cases this may result in a reward for delays, although the total travel time is unaffected and
passengers arrive at the station later than scheduled.
Therefore we chose a different approach that also enforces a reliable operation of the network

close to the timetable. We define vTðS;L;L0; aÞ, the (local) waiting time for a passenger arriving at
station S on line L waiting for the connecting line L0 if L arrives a minutes late:

vTðS;L;L0; aÞ :¼ wTðS;L;L0Þ if a<wTðS;L;L0Þ þ k
t if a*wTðS;L;L0Þ þ k

�
; ð7Þ

where k is the connection control limit. This means that if the delayed passenger on line L still
reaches the scheduled connection, the whole scheduled waiting time wTðS;L;L0Þ is taken as his
waiting time, instead of the smaller exact waiting time ½wTðS;L;L0Þ � a�þ. If the delay a is larger
than the scheduled time buffer wTðS;L;L0Þ plus the connection control limit k, we assume that the
connecting train of line L0 is missed and the waiting time is set to t. Note that here we do not take
into account that L0 may be late too, so that the individual passenger may still reach the
connection and that if he misses it, he may not have to wait for a complete period t. The value t
serves as a penalty for not arriving on time. A possible delay in the departure of L0 is not taken
into account here but it may affect the waiting time of passengers arriving on L0 at the next station.
The formal definition of the mean actual waiting time V(T) over the whole network is a little

involved. We define it as the sum over all connections of the expectation of the average local
waiting times:

VðTÞ :¼
X

ðS;L;L0Þ
E

1

N

XN
k¼1

vTðS;L;L0;AkðS;LÞÞ
 !

� gðS;L;L0Þ ð8Þ

The expectation is taken with respect to the distribution of the random delay AkðS;LÞ of the k-th
train of line L arriving at station S, see (6). Note that because of the random nature of the
disturbances acting on each train individually, the strict periodicity of the operation is lost and we
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have to take the average of all trains of line L. As an approximation, N is the number of trains
that run during a reasonable time interval, e.g. 24 hours. g(S, L, L0) are the same weights as in
equation 1.
As was mentioned before, we are not able to compute the propagated delay at changing stations

exactly. Hence, the distribution of AkðS;LÞ and the expectation in equation 8 cannot be
determined analytically. Instead we estimate V(T) by a computer simulation of the reduced model
making, use of equations 3 and 4. For this estimation, a 24-hour period of operation is simulated
repeatedly until the averages become stable. The result is taken as the cost function value ‘mean
actual waiting time’.

4 Optimisation by enhanced genetic algorithms

4.1 Multi-criteria genetic algorithms

Multi-criteria optimisation problems are well suited for an approximate solution by genetic
algorithms (see e.g. Zitzler et al., 2001, for a recent overview). We developed a new variant of
adaptive control of the optimisation process, which incorporates and improves several of the
classical multi-criteria approaches of genetic algorithms.
Genetic algorithms work with a ‘population’ of solutions, which are timetables in our

application. The starting population is formed by timetables with random departure times
and random running times. This random population evolves through a fixed number of
generations. In each generation, the population is first enlarged by offspring, which are
produced from the present population using genetic operators such as cross-over and mutation.
From this enlarged set of solutions the next population is selected where solutions with low
cost function values are preferred in some sense. The solutions belonging to the lower envelope
of the cost function values of the populations are used as an approximation to the Pareto-
optimal set of timetables.
In our case, the genetic operators are simple to design as any lists of departure times

0)pðS;LÞ<t and running times t0ðS;S0Þ)dðS;S0Þ)t1ðS;S0Þ yield a feasible timetable (here
t0ðS;S0Þ is the minimal running time for section (S, S0)). Therefore mutation may just change a
departure or running time randomly within these limits. For cross-over, we select two timetables
from the present population at random, and then mix the two lists of departure times or the two
lists of running times from the ‘parents’.
The crucial point is the selection of the timetables for the next generation based on the cost

function values. Our system adapts the selection to the state of the present population. As this
part of the algorithm is described in detail in Kolonko and Voget (1998) we only give a short
description here.
The random starting population P0 is regarded as a random sample from the solution space.

The cost functions are normed using mean and variation from this sample. The enclosing
rectangle RP of the cost function values of a population P is taken as the state of the population.
We postulate that the ideal evolution should lead the centre of RP along a line that connects the
centre RP0

of the starting population with the origin. This would develop solutions which have
low investment costs and low waiting times.
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During the optimisation process the population (or rather its cost function value cloud) often
has an undesirable shape as is indicated in Fig. 4 for the two cost functions W(T), C(T). The
cloud may become disconnected as in Fig. 4(a), lose its variation as in (b) or lose the balance
between the two cost criteria as in (c). We use the enclosing rectangle RP of the present
population as an indicator of such situations. Then the type of selection for the next generation is
chosen in order to force the population into the ‘right’ direction. In case (a), a selection according
to the so-called Pareto-rank of the solution (see Fonseca and Fleming, 1993) is used. It tends to
contract the population as indicated by the black arrows. This is a disadvantage if it is applied
constantly, the population will then develop as in Fig. 4(b). If situation (b) occurs in our
algorithm, we apply the selection procedure ‘VEGA’ from Schaffer (1985) which if used solely
leads to separated sub-populations as in (a). If one of the cost criteria is not properly minimised
as in (c), we simply restrict selection to this cost function alone. Thus, the selection is adapted for
each new generation leading to a rather uniform exploitation of the most important part of the
Pareto front.

4.2 ‘Avant-garde breeding’

To speed up the optimisation process, we introduced a new concept in which the optimisation
effort is not always spread evenly among the elements of the population. From time to time, a
single solution is picked at random from the present population and an intensive local
improvement procedure is applied to it. The result is a new solution which in most cases is much
better than the rest of the population, runs ahead of it in cost function space. This avant-garde
solution is put back into the population and offspring are produced for the next population by the
standard process. Typically, within a few generations the population catches up with the avant-
garde (see Fig. 5 below). The other solutions inherit the structure of a good solution very quickly
once it is present in the population. This process of sending out an avant-garde solution and then
catching up with it is repeated every KAvant generations and the intensity of the local search (e.g.
number of trials) is increased each time.
For the local improvement in the avant-garde step, simulated annealing turned out to be most

efficient. In simulated annealing, a random neighbour T0 of the present solution T is produced by
applying the mutation operator to T. T0 is accepted as the new solution if it is better than T and

Fig. 4. The type of selection is adapted to the state of the optimisation process.
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with a certain probability even if it is worse than T (uphill climbing). To be able to compare the
quality of any pair of timetables T, T0 we need a one-dimensional criterion. Following an idea of
Ishibuchi and Murata (1996), we use a linear combination of the original cost functions W(T),
C(T) and V(T) where the linear coefficients (and thus the direction of the selection pressure) are
selected at random for each new simulated annealing run. The ‘temperature’ schedule for the
annealing that controls the acceptance probability, is adapted to the course of the optimisation
(see Kolonko, 1999; Kolonko and Tran, 1997, for more details on this type of simulated
annealing).
Figure 5 shows the effect of the avant-garde in some screen-shots. It is from a network of a

regional train service in the federal state of Sachsen-Anhalt in Germany, which has 467 stations
and 295 lines. Here, the dark grey dots represents the present population (its cost function values),
the black dots are the Pareto best timetables found so far, and the light grey dots are the old
solutions which have not survived. Figure 5(a) shows the population after 200 generations with
the adaptive genetic algorithm. Then the first avant-garde solution is formed which is the isolated
black dot in Fig. 5(b). Only five generations later, the whole population has inherited good
properties of the avant-garde as is shown in Fig. 5(c). Figure 5(d) is the population after another
100 generations, just before the second avant-garde is formed which appears in (e).
Figure 5(f ) shows the population 200 generations later. It clearly shows how the population
has skipped large parts of the solution space towards better solutions.

4.3 Simulation with correlated cost functions

Genetic algorithms and simulated annealing produce a huge number of tentative solutions, which
are thrown away after evaluation of the cost functions. Evaluating V(T) requires the repeated
simulation of the whole network and slows down the optimisation process considerably, for
example, if V(T) is used in the avant-garde forming process with simulated annealing.
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Fig. 5. The evolution with an avant-garde. Note that the x-axis is permanently rescaled.
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However, as was mentioned above, one could expect that the values of the scheduled and the
estimated mean waiting time, W(T) and V(T), are very close as long as the time buffers at stations
are large enough, that is, as long as W(T) is large. But then V(T) does not add much to the
selection of timetables for future generations. We therefore switch off the expensive cost function
V(T) for the first generation and calculate W(T) and C(T) only. Then, after a number of
generations we simulate V(T) for all timetables in the population and calculate the empirical
correlation of W(T) and V(T) in this sample. If the correlation is above a fixed threshold,
simulation is switched off again for the next KSimul generations. If it is below, then the value of
KSimul is decreased and simulation of the population takes place more often.
Figure 6 shows the result of this approach for (a slightly simplified version of ) the German ICE

network. In (a) the (W(T), V(T)) pairs for 10,000 generations are shown. When simulation is
switched off, we put VðTÞ :¼ 0 producing points on the x-axis. The timetables with simulated
V(T) values (every KSimul ¼ 200 generations) produce dots along the diagonal, quite closely at the
beginning, that is, for high scheduled waiting time W(T) and less closely for better timetables. For
this simulation we used the time buffers on super-sections that were fixed to 5% of the initial
running time t0ðS;S0Þ; l=ðcmÞ � 0:25 and m ¼ 0:66. This means that with probability 0.75 there
will be no delays on a super-section. If the train is delayed, then its conditional mean delay is
ðm� l=cÞ�1 ¼ 2 minutes. Moreover, the additional delays at changing stations are exponentially
distributed with mean 2.5 minutes. The 10,000 generations with the above described ‘smart
simulation’ took about 4 minutes on a 600 MHz PC.
Figure 6(b) shows a set of solutions for the same network which were obtained from several

longer optimisation runs. The V(T) values were computed by simulation afterwards. As more
solutions with small scheduled waiting time W(T) are present, the change in the stability becomes
more visible. Again the bad solutions (with respect to W(T)) have high correlation whereas the
better ones show that there is in fact a point G, where the estimated mean waiting time decreases
rather slowly and the variation along the y-axis increases. This means that from this point
onwards we found more timetables that have (almost) identical scheduled waiting time W(T) but
differ in their V(T) values. This is an empirical support of the conjecture about the point G as
stated in the introduction.
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Fig. 6. The correlation between scheduled and mean actual waiting time degrades with increasing synchronisation of

trains. (a) shows a single optimisation run, (b) shows solutions collected from several runs.
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5 Conclusions

Our railway optimisation has three main goals: (1) it produces timetables that are (approximately)
Pareto optimal with respect to complex cost criteria, (2) it yields cost-benefit analyses between the
cost functions, for example, between investments into the network and the scheduled waiting time,
and (3) it allows the estimation of the ‘turning point’ for the synchronisation of the timetables
from which on a mere reduction of waiting time decreases the stability of the timetables under
random delays.
To obtain these results, special evolutionary algorithms had to be developed. First, we

introduced the adaptive selection scheme, which guarantees a broad approximation of the Pareto
front. The procedure is accelerated by allowing single avant-garde solutions which make the
population jump through the solution space. A third concept allows inclusion of the simulated
cost function V(T) into the optimisation at a reduced expense by exploiting its correlation with the
simpler function W(T) in large portions of the solution space. The border of the regions of high
correlation between W(T) and V(T) is of interest in itself as it describes a stability property of the
network.
Future work will concentrate on the further improvement of the optimisation procedure and a

closer examination of the point G for different network instances. We shall also try to include
investments that not only accelerate the trains but that also allow reduction of the frequency or
intensity of random disturbances making the running and stopping times of trains more stable.
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