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Michael Kolonko, Institut für Mathematik,

University of Technology Clausthal, Germany

ABSTRACT

During the last decades the limited capacity of runways has become an important source for
delays on major airports. Particular safety regulations require asymmetric separation times
for aircraft during their landing operations. If there are two or more runways available,
aircraft can be assigned to runways in such a way that large separation times are avoided.
This increases the actual throughput of the system and reduces additional delays.

We formulate the assignment problem as a mathematical optimization model. Though
we cannot find optimal assignment strategies analytically, we can use the model as a frame-
work for the simulation of strategies and as a tool for the heuristic optimization of strate-
gies. We examine two classes of strategies that reduce the waiting times of arriving aircraft
in simulations.

In particular, we can show that in realistic simulation scenario of a German airport, one
of our strategies performs much better than the manual assignment as it is used by flight
operators today. As our strategies are essentially simple look-up tables, they may well be
incorporated into future flight assistance systems for airports.

1 INTRODUCTION

During the last decades a significant growth of air traffic has been observed which has not
been countered by an adequate increase of runway capacities at airports. Since runway
capacity has been identified as a major source of delay, the efficient use of existing runway
systems is necessary to meet the demand of commercial aviation.

In this article we present simple strategies to route arriving aircraft to runways in an
efficient way such that for a given arrival rate of aircraft the waiting times are minimized or
vice versa the arrival rate is maximized with waiting times below a given threshold.

A crucial point is the uncertainty concerning arrival times of approaching aircraft. If all
details of future arrivals were known, the problem would be static and an optimal sequence
could be determined by mathematical optimization. In reality however, the prediction of
air traffic is often imprecise due to en-route delays or arrivals ahead of schedule. Thus
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a dynamic scheduling algorithm is needed that assigns incoming aircraft according to the
information available at the time of arrival.

In this chapter, we restrict ourselves to a particular routing model: there are two runways
available for landing aircraft (we do not consider any starts in the present set-up). Arriving
aircraft are assigned to one of the runways as soon as they pass the threshold of the so-called
terminal manoeuvring area (TMA) of the airport. We do not assume any knowledge about
aircraft that are still beyond TMA, so the main information for the routing decision is the
state of the runways. See [3] and the literature cited there for models that take into account
additional information. If the assigned runway is not free at the time the aircraft is ready
to land, it has to wait in a ’queue’ which in this case is rather a loop. Each runway has its
own queue, aircraft are not allowed to change the queue or their position within the queue
once they are assigned to it. This restriction reflects the fact that assignments have to be
fixed some time before the aircraft enters the final approach to ensure a safe trajectory to
the runway.

If we look at the runways as servers and at the incoming aircraft as their customers,
then the problem can be modeled as a simple queuing system with two parallel servers.
The arrival times are random, often it is assumed that they form a Poisson process (see
e. g. [7]) but we also consider more realistic arrival patterns in our simulation in Section 5.
The service time of an aircraft is the time a trailing aircraft has to wait until it can begin its
landing operation. The aim is to find routing strategies that minimizes the average waiting
time of a customer in the queue.

The characteristic feature here is that consecutive service times are not independent as
it usually assumed in queuing systems. An aircraft causes air turbulences that endanger the
stability of trailing aircraft. The required separation times between consecutive landings
therefore depend on the size and weight of the two aircraft involved and on their order: a
heavy aircraft may follow more closely on a light one than the other way round. Hence the
service time of a landing aircraft, i. e. the separation time to its successor, also depends on
the type of this successor and hence also on the following service time. This dependence of
service times cannot be neglected as will be shown below.

We start in Section 2 by formulating a mathematical model for the problem sketched
above. It turns out that determining an optimal routing strategy requires the solution of
a complex stochastic optimization problem. Though the optimization problem seems in-
tractable, a simulation of the performance of a given strategy is quite simple. We therefore
try to find reasonable strategies by a combination of simulation and heuristic search. Using
simulation for the evaluation of routing strategies also has the advantage that we can easily
include any air traffic management procedures that depend heavily on the airport layout and
airport specific regulations.

We identify two classes of simple and transparent strategies for which heuristic search
provides good results. In the first case which is detailed in Section 3, the strategies are not
allowed to use the full information of the system state, instead they must rely on a rough
classification of the state into one of a few categories. Under this restriction good strategies
can be derived by local search using ideas from neuro-dynamic programming, see e. g. [6].
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In Section 4 we use strategies that are variations of the so-called join-the-shortest-queue
principle. These strategies can easily be parameterized and good strategies, i. e. good pa-
rameter values can be determined by genetic algorithms and simulated annealing in combi-
nation with simulation.

In Section 5 we present results from simulation experiments for these two types of
strategies with different scenarios. In a detailed study with realistic 24h data of a German
airport we compare our strategies with the routing as it is performed by flight operators
today. The results show that even though the mathematical model captures only part of the
real problem, the strategies obtained have a significant potential for capacity improvements
and delay reductions in real operations.

2 MATHEMATICAL MODELS

In this section we sketch a mathematical model for the the runway assignment problem.
For a single runway, a single server queue with dependent service times is an adequate
model. Combined into a system of two (or more) runways this leads to a complex stochas-
tic dynamic programming problem. Though we cannot solve this problem analytically to
obtain an optimal strategy, we can use it as a framework for the simulation and evaluation
of strategies in the Sections below.

A Queuing Model

We start by analyzing a single runway without any routing. As indicated in the Introduction,
aircraft are classified into three weight categories: heavy, medium and light. The separation
times for consecutive aircraft are given in a 3× 3 matrix

D :=

d(1, 1) d(1, 2) d(1, 3)
d(2, 1) d(2, 2) d(2, 3)
d(3, 1) d(3, 2) d(3, 3)

 . (1)

Here d(i, j) denotes the separation time an aircraft of type j has to keep to a leading aircraft
of type i with i, j ∈ {1, 2, 3, } = {heavy,medium, light}.

In the most basic case, we assume that the arrivals are completely random. More pre-
cisely, this means that the arrival times of aircraft at the TMA form a Poisson process.
The types of the arriving aircraft are selected according to a given ’type mix’ (p1, p2, p3)
which gives the average relative proportions of the three types. Here, (p1, p2, p3) =
(0.23, 0.72, 0.05) e. g. means that 23% of the aircraft are of type ’heavy’, 72% of type
’medium’ and only 5% of type ’light’. Under these assumptions, a single runway can be
modeled as an M/SM/1-queue, where ’SM ’ stands for ’semi-Markov’, a concept that
allows for dependent service times as needed in our case, see [8] for more details.

An M/SM/1-system is slightly more complicated than the standard M/G/1-system
with independent service times which is used as a model for a runway e. g. in [4]. In an
M/G/1-system the average waiting time is easily determined as a function of the arrival
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rate and the first two moments of the service time distribution. The corresponding results
for S/SM/1 are a little more involved, they include the effect the dependence of service
times may have on the average (see [8], [1]). In [1] it is shown that the average waiting
times obtained from the ’full’ M/SM/1-models and the simplified M/G/1-models may
be quite different and that the error becomes arbitrarily large as the arrival rate increases.

Runway Assignment as Markovian Decision Process

We shall now turn to a system with two runways. If the ’local’ arrivals of aircraft assigned to
a runway form a Poisson process than we have a system of two separate M/SM/1-queues.
But even if the outer arrival stream of aircraft at the airport (TMA) follows a Poisson pro-
cess, the local arrival streams of aircraft after assignment will be Poisson only for very
special assignment strategies, see [1] for more details on the so-called ’split-strategies’.

In general, an assignment decision influences the situation the next arriving aircraft
will see on both runways so that they cannot be treated separately. Runway assignment
is a typical sequential decision-making problem, it can be modeled using a discrete time
Markovian decision process (MDP). We shall briefly describe the main ingredients of an
MDP.

δ(s)

average

ξ

random
event

cost C(δ)

action

cost function

state transition

state s

c(s, a)

function g
strategy δ

Figure 1: Markov Decision Process

In MDPs, decisions have to be made at certain points in time, in our case these are the
arrival times of aircraft, denoted by T1, T2, . . . . These may either form a Poisson process or
result from an observation of a real arrival stream. The type of the n-th arriving aircraft is
denoted by Jn taking on one of the values 1, 2, 3 for ’heavy’,’medium or ’light’ as described
earlier. The time that has elapsed since the last arrival and the type of the incoming aircraft
together form a stochastic arrival event. If there are two runways named I and II, the
possible decisions or actions are simply a = I or a = II.
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load uI

load uII

type jI

type jII

type k

Figure 2: Elements of the system state

The central part of the model is its state s. It has to comprise all information available
about the future behavior of the system at the moment a decision has to be made, so that the
decision may be based solely on the present state of the system. A decision strategy is then
a function δ that in each state s chooses an action δ(s). Once an action a has been taken, the
system state s changes according to a transition function g to the new state s′ = g(s, a, ξ)
depending on s, a and the event ξ that represents the external random influence on the
system. This transition incurs one-step-costs c(s, a). A strategy δ can be evaluated e. g.
by the average costs C(δ) resulting from applying δ to the system over a long time. This
general scheme is depicted in Figure 1.

We must now define a ’state’ appropriate for the runway assignment. As we assume
that there is no knowledge about aircraft beyond TMA, the state consists of a description of
the current load of the runways and the additional demand of the arriving aircraft. The load
u of a runway at a certain point in time is the remaining waiting time of the aircraft waiting
at the tail of its queue. The load u may be negative if there is no aircraft waiting and the
last touch-down took place−u time units ago. Beside the loads uI , uII of the two runways,
we also need the types of the aircraft involved in the assignment to be made. These are
the types jI , jII of the two aircraft waiting at the tail of the queue behind one of which the
arriving aircraft has to queue and the type k of the arriving aircraft itself, see Figure 2. For
ease of presentation we assume for the moment that the aircraft do not need any additional
time to proceed from the threshold TMA to the runways, so that if the assigned runway is
free landing may start at once.

Hence the state of the system at the time of the arrival of an aircraft can be summarized
as

s = (uI , jI , uII , jII ; k), (2)

see Figure 2 for an example. Now assume, that the n-th aircraft arriving at time Tn is of
type Jn = k and sees the state sn = (uI , jI , uII , jII ; k) upon its arrival. If it is assigned to
runway I then its waiting time would be

[uI + d(jI , k)]+
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where [t]+ = max{t, 0} is the positive part of a real number t. To see why this is the waiting
time, note that the new aircraft first has to wait for uI time units until the aircraft (of type
jI ) waiting in front of it begins its landing. In addition, it has to keep the separation time
d(jI , k) to this predecessor resulting in uI + d(jI , k). If this expression is positive it is the
additional waiting time of the newly assigned aircraft in the queue. If it is negative or 0 ,
which may happen if the predecessor has landed a long time ago and uI is negative, then the
additional waiting time of the aircraft is zero, it can start its landing operation immediately.
A similar argument applies for runway II, so that we can define the waiting time of the
arriving aircraft of type k when it is assigned to runway a ∈ {I, II} as the one-step-costs

c(s, a) :=
{

[uI + d(jI , k)]+ if a = I
[uII + d(jII , k)]+ if a = II

= [ua + d(ja, k)]+. (3)

Assume that the assignment was to runway I and that the next aircraft is of type Jn+1 =
l arriving t time units later at Tn+1 := Tn + t. Then the next arrival event is ξ = (t, l) and
the n+1-st aircraft would see the load [uI +d(jI , k)]+− t on runway I and load uII− t on
runway II as t time units have elapsed. Waiting at the end of queue I is the newly assigned
aircraft of type k, so that the new state, seen by the n + 1-st aircraft immediately before its
own assignment is

sn+1 := ([uI + d(jI , k)]+ − t, k, uII − t, jII ; l).

Generally, the transition function from state s = (uI , jI , uII , jII ; k) when action a was
applied and the arrival event ξ = (t, l) occurred is

g(s, a, (t, l)) :=
{

([uI + d(jI , k)]+ − t, k, uII − t, jII ; l) if a = I
(uI − t, jI , [uII + d(jII , k)]+ − t, k; l) if a = II

. (4)

Depending on the distribution of the arrival events, the sequence of states s1, s2, . . . be-
comes a stochastic process. If a strategy δ is applied, the n-th aircraft has waiting time
c(sn, δ(sn)) and we can define the expected average waiting time as

C(δ) := E

(
lim

N→∞

1
N

N∑
n=1

c(sn, δ(sn))

)
. (5)

Finding a strategy δ that minimizes C(·) for a given event distribution (e.g. for a Poisson
stream with a given type mix) requires the solution of a complex stochastic dynamic op-
timization problem, see [5] and [2] for more details about this. Nevertheless, the model
sketched above can easily be used for simulation, see Section 5 below. We only need a
source for the arrival events, then the state transitions and the determination of the waiting
time can be performed as given in (4), (3).

Let us now discuss some simple strategies δ that could be used to assign the aircraft.
First, the so-called round-robin strategy (also called ’stagger approach’) simply switches
between runway I and II, so that all aircraft with an even number are on one runway and all
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with an odd number on the other. This strategy does not take into account the present state
of the runway but simply tries to balance the loads. This can be done more efficiently by
strategies of the type ’join-the-least-load’ (JLL) (also called join-the-shortest-queue (JSQ)).
In its most basic form, this strategy assigns an arriving aircraft to the shorter queue, i.e. to
runway I if uI ≤ uII for the present state s = (ui, jI , uII , jII ; k). As the types of the
aircraft involved are known, it is more reasonable to route to runway I if

[uI + d(jI , k)]+ ≤ [uII + d(jII , k)]+ (6)

i. e., if the waiting time on runway I would be less then on runway II. In terms of the MDP,
this means that we choose that action (runway) a that minimizes the one-step-costs c(s, a).
Such a strategy does not take into account any long-term effects. In certain situations it may
e.g. be reasonable to impose a larger waiting time on the present aircraft to keep a runway
free for a heavy aircraft that may arrive next with high probability. Optimal solutions to the
MDP balance the short-term and long-term effects of actions but, as was mentioned above,
they are difficult to obtain due to the complexity of the state space. In the next two Sections
we therefore study simpler strategies that do some balancing and perform much better than
round-robin and JLL.

Before doing so let us shortly discuss a possible extension to our model. We can allow
for an additional time τ that an aircraft needs to proceed from TMA to the runways. Then,
the earliest landing time of an aircraft is its arrival time plus τ. In reality, τ may depend on
the aircraft, the runway it is assigned to and sometimes even on the size of the waiting queue
of the runway it is not assigned to but which it must circumfly. If we restrict ourselves to
the simple case where τ depends only on the arriving aircraft we may include τ into the
arrival event (t, l, τ). We can then extend our model to the important case where aircraft
may arrive at an airport from different directions, so that they have trajectories of different
lengths to their runways or queues.

The waiting time on runway I in (3) then changes to [uI − τ + d(jI , k)]+ as uI − τ is
the load the aircraft sees when it arrives at the runway. Its landing time is

[uI − τ + d(jI , k)]+ + τ = max{τ, [uI + d(jI , k)]+}.

Hence the load the next aircraft sees at its arrival as part of the next state sn+1 is
max{τ, [uI + d(jI , k)]+} − t on runway I and uII − t on runway II.

However, for a runway system with high workload, a continuous occupancy of the
runways without significant idle times can be expected. Thus it can be assumed that for
most of the aircraft the earliest possible landing time is not of particular importance for the
actual landing time. We shall therefore drop this feature from further discussions.

3 OPTIMAL STRATEGIES IN A REDUCED STATE SPACE

Formally, the state space S for a model as sketched in Section 2 is very large, it contains all
real numbers uI , uII as possible loads of the runways. To derive optimal strategies becomes
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a very difficult task in this situation. Also, from a practical point of view, it seems unlikely
that a routing strategy δ that takes on only two values can make full use of the detailed
information contained in the state s = (uI , jI , uII , jII ; k).

Instead, it seems reasonable to assume that the routing decision for an incoming aircraft
will mainly depend on the difference of the loads on the two runways and not so much on
their absolute values. Hence one could replace the original state s = (uI , jI , uII , jII ; k)
by (∆, jI , jII ; k) where ∆ = uI − uII . Moreover, one would expect that a good strategy
does not change its values (I or II) arbitrarily often as ∆ varies. Hence, we may fix a few
threshold values x1, . . . , xn and restrict ourselves to strategies δ̂ that change their values
only at the thresholds. See Table 1 for an example with four thresholds.

∆ ∆ ≤ −120 −120 < ∆ ≤ −90 −90 < ∆ ≤ 90 90 < ∆ ≤ 120 120 < ∆
level d 0 1 2 3 4

Table 1: A simple threshold strategy with n = 4 symmetric thresholds−120,−90, 90, 120.

Restricting the class of strategies may also be viewed as replacing the original state
s by a reduced state ŝ := (d, jI , jII ; k) where d = 0, 1, . . . , n denotes the level of the
load difference determined by xd < uI − uII ≤ xd+1 for 1 ≤ d ≤ n − 1, d = 0 for
uI −uII ≤ x1 and d = n for xn < uI −uII , see Table 1. Note that our reduced state space
Ŝ has only finitely many states, e.g. with four thresholds and three types of aircraft we have
5× 33 = 135 reduced states in Ŝ.

Our model has now become a special case of a so-called partially observable Marko-
vian decision process (POMDP). These are generally used for systems in which the exact
identification of the system state is impossible and only ’observations’ of the true state are
available to the decision maker. The structure of a POMDP is outlined in figure 3.

observation

average
cost C(δ)

event
random

state transition
function g

state s

action

cost function

δ̂(ŝ)

c(s, a)

ξ ŝ

strategy δ̂

Figure 3: Partially Observable Markov Decision Process
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Note that the restricted state space of observations is used for decision making only, the
dynamics of the system still rely on the complete state s. In particular, when simulating the
performance of a strategy δ̂, state transitions are as given in (4) but the action applied in
state s is δ̂(ŝ).

The advantage of this approach is that we may use the reduced state space for a simpli-
fied search for good strategies δ̂, whereas the quality of δ̂ is measured against the dynamic
system with complete information. Of course, we still have to decide how the state space
is reduced, i.e. we have to decide on the number and on the values of the thresholds to be
used.

Representation and Optimization of Threshold Strategies

The finite state space Ŝ = {ŝ1, . . . , ŝN} allows for a representation of a strategy δ̂ as a
vector of length N. Its i-th entry is I if δ̂(ŝi) = I and II if δ̂(ŝi) = II for i = 1, . . . , N.
This vector is used as a look-up table to determine the action δ̂(ŝ) for each reduced state ŝ,
see Table 2 for an example. Though the reduced state space is finite, the number of possible
strategies is 2N which still may be very large. Finding a good strategy δ̂ therefore remains
a difficult task.

observation runway
ŝ = (d, jI , jII ; k) δ̂(ŝ)

(0,1,1;1) I
(1,1,1;1) I
(2,1,1;1) II
(3,1,1;1) II
(4,1,1;1) II
(0,2,1;1) I
(1,2,1;1) I
(2,2,1;1) I
(3,2,1;1) II

...
...

Table 2: An example of a threshold strategy δ̂ with thresholds as in Table 1.

We have used local search for an iterative improvement of the strategies. Local search
starts with an arbitrary solution and then randomly picks candidate solutions from the neigh-
bourhood of the present solution. If the candidate is better, it becomes the new solution,
otherwise a new candidate is picked.

If strategies are represented as vectors with entries I and II, a natural neighbourhood
of δ̂ for the local search is the set of all strategies (vectors) that differ in exactly one position
from δ̂. This means that we have to compare δ̂ with a candidate strategy δ̂′ that chooses a
different runway for exactly one reduced state ŝ′.
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The strategies are compared with respect to the average waiting times. These waiting
times are estimated by the following procedure: a certain number H of arriving aircraft
are simulated and their average waiting time over time horizon H is recorded. This is
repeated several times until we obtain a reliable estimator of the average waiting time for
the strategy used. As the two strategies to be compared differ only in a single reduced state
ŝ′ all waiting times are equal for the two strategies until the reduced state ŝ′ is hit for the
first time. Therefore, we only need to simulate the system after it has gone through ŝ′. The
simplest way to achieve this would be to start the simulation of the runway system in the
reduced state ŝ′.

However, the problem here is that there is a huge class S′ ⊂ S of full states that may
underly the observation of the reduced state ŝ′ = (d, jI , jII ; k). In fact, these are all states
s′ that have load differences on the level d. Starting with observation ŝ′ therefore means
to select one of these states as starting state s′ of the runway simulation system. However,
if the results are to representative, this choice of s′ must correspond to the frequency of
the occurrence of s′ during operation or simulation. This is not known and will generally
depend on the strategies used.

Nevertheless, we can simulate this unknown distribution by starting the simulation sys-
tem in an arbitrary but fixed state s0 ∈ S, e.g. with empty runways. The system is run
and its reduced states ŝ are observed until the particular reduced state ŝ′ occurs for the first
time. Now, the average waiting time wH

1 of the next H aircraft is determined. After that,
simulation is continued without recording of waiting times until ŝ′ appears again starting
another observation sequence of H aircraft resulting in average waiting time wH

2 . In this
way average waiting times wH

1 , . . . , wH
n with time horizon H are sampled until the estima-

tor
1
n

(wH
1 + · · ·+ wH

n )

has a prescribed accuracy determined from the 95% confidence interval. If the particular
reduced state ŝ′ reappears before a sequence of H observations is finished, it is treated as
an arbitrary state in order to keep the sampled sequences non-overlapping and independent.

Subsequently, the system is started again in state s0 this time using the candidate strat-
egy δ̂′. The estimated average waiting times over the finite horizon H for the two strategies
are then compared and δ̂′ is either accepted as new solution or rejected.

We cannot guarantee that the state process starting in s0 will ever hit the reduced state
ŝ′ or that it will return to it later. If ŝ′ has not (re-)occurred after a fixed number of steps
(aircraft), we consider ŝ′ as irrelevant for the present strategy and pick a new candidate from
its neighbourhood.

The characteristics of the solutions which are generated using the local search algo-
rithm depend crucially on the simulation horizon H . For small values of H , the resulting
strategies are greedy and short-sighted similar to join-the-least-load. In the extreme case
where H = 1, a change of the routing decision is accepted only if it improves the waiting
time of the next arriving aircraft. In our experiments we found best results with horizons H
between 5 and 10.
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4 GENERALIZED JLL-STRATEGIES

We shall now examine the join-the-least-load strategy and variants of it more closely.
In its simplest form, JLL routes an arriving aircraft to runway I if uI ≤ uII in the

present state s = (uI , jI , uII , jII ; k). If the waiting times are taken into account as in (6)
we see that routing to runway I occurs if either [uI + d(jI , k)]+ = 0, i.e. runway I is free,
or if it is not free and

uI ≤ uII + d(jII , k)− d(jI , k).

If we take (uI , uII) as a point in the two-dimensional plane, then these two strategies can
be visualized as in Figure 4.

I

route to II

route to

uII

I

II

uII

uI

route to

route to

uI

−d(jI , k)
d(jII , k)

Figure 4: Simple JLL-strategies are characterized by a line parallel to the diagonal

A more general class of strategies ’JLL++’ is obtained if one allows any straight line
A + Bx with coefficients A,B as a separator between the ’route to I’ and ’route to II’
regions as indicated in Figure 5. Moreover, these coefficients A = A(jI , jII , k) and B =
B(jI , jII , k) may depend on the three types jI , jII , k of aircraft contained in state s.

Finding good strategies in this class JLL++ means to determine (3× 3× 3)-matrices A
and B such that the decision rule δA,B has low average waiting time where δA,B is defined
by

δA,B(s) = I ⇐⇒ uI ≤ A(jI , jII , k) + B(jI , jII , k) · uII (7)

with s = (uI , jI , uII , jII ; k). The average waiting time C(δA,B) as defined in (5) has to be
estimated for each pair A,B from simulation.

To find good parameters A,B we used genetic algorithms, see e. g. [9] for a general
outline of these algorithms. Genetic algorithms use a set of solutions, the population, which
is iteratively improved by applying operations like crossover and mutation.

In our case, the population consists of pairs of matrices (A,B) as the individuals. A
starting population is made up from randomly chosen matrices. A crossover creates a new
pair (A+, B+) from its two ’parents’ (A1, B1), (A2, B2) selected from the present popu-
lation. A+ could result from A1 by exchanging part of the rows and columns with A2 or
by interpolation between A1 and A2 taken as points in the 3 × 3 × 3-dimensional space.
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uII

uI

B

A
route to II

route to I

Figure 5: A generalized JLL-strategy, parameterized by A = A(jI , jII , k) and B =
B(jI , jII , k).

Similarly, B+ is made up from B1, B2. The result (A+, B+) hopefully inherits some of the
good properties of its parents. It is then mutated by randomly changing some of the values
in the matrices, typically by a small amount only.

In this way, a number of new offspring individuals are produced enlarging the present
population. Then the ’fittest’ individuals from this extended population are selected to form
the next population. Here ’fitness’ of an individual (A,B) is measured by the simulated
average waiting time of the corresponding strategy δA,B. The selection may be such that
the best strategies only survive, but it is often more reasonable to randomize the selection
and pick the individuals with a probability proportional to their average waiting times.

A∗(jI , jII , 1) A∗(jI , jII , 2) A∗(jI , jII , 3)

jII jII jII

1 2 3 1 2 3 1 2 3
1 -0.423 -0.307 0.814 -0.953 0.489 -0.864 -0.253 -12.576 -45.014

jI 2 0.569 -0.808 -0.433 0.697 0.81 -0.107 12.527 -0.179 -31.96
3 0.121 0.658 -0.827 -0.591 0.917 -0.617 44.515 31.935 0.22

B∗(jI , jII , 1) B∗(jI , jII , 2) B∗(jI , jII , 3)

jII jII jII

1 2 3 1 2 3 1 2 3
1 0.472 1.742 1.129 1.803 0.056 0.511 1.042 1.479 1.129

jI 2 0.928 0.695 1.3 1.682 0.304 0.885 1.755 0.957 1.076
3 0.511 0.142 0.019 0.661 0.472 1.862 0.69 0.499 1.138

Table 3: A solution (A∗, B∗) for the generalized JLL++ strategy found by genetic algo-
rithms.

After several such ’generations’, the population typically contains good solutions. The
process can be improved if from time to time local optimization is applied to single indi-
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viduals. This stops the genetic evolution for some time, but afterwards a new, often much
improved individual is given back into the population. Its good ’genetic material’ then
improves the quality of the population during the next few generations.

Table 3 shows matrices (A∗, B∗) obtained from optimization with genetic algorithms.
The corresponding strategy δA∗,B∗ works as follows: if e.g. an arriving aircraft of type
k = 1 =’heavy’ finds an aircraft of type jI = 3 = ’light’ at the end of queue I and
jII = 2 = ’medium’ at queue II then it would be routed to runway I if the load uI on this
runway is less than or equal to

A(3, 2, 1) + B(3, 2, 1) · uII = 0.658 + 0.142 · uII .

5 SIMULATION RESULTS

The simulation and optimization system we used were developed at UT Clausthal. The
structure of the simulation tool is shown in Figure 6, it follows the structure of the Markov
decision process as depicted in Figure 1. The arrival stream generator produces the random
arrival events. They can be a truly random with inter-arrival times and types of aircraft
selected according to some distribution but the events can also be derived from real arrival
data of some airport. The central part of the system maintains the state of the runways and
queues as formalized in (2). It uses a strategy δ for the routing decisions. Finally, the waiting
times are recorded and averages and other statistical information from the simulation run
are gathered.

Simulation tool for benchmarking

arrival stream
generator

runways
and

queues

waiting times,

strategy

statistical
analysis

δ

Figure 6: The structure of the simulation tool

In this set-up, the tool is used for the simulation and benchmarking of given strategies.
It may also be used as a subsystem for the heuristic optimization of strategies as indicated
in Figure 7. Here the output of a simulation run (or part of it) is used for the evaluation
of strategies during the iterative improvement by local search or genetic algorithms as de-
scribed in the previous chapters.
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evalu-

ation

Simulation tool for benchmarking

arrival stream
generator

runways
and

queues

waiting times,

strategy

analysis
statistical

δ

new
strategies

improvement

by local search or

genetic algorithms

Iterative optimization of strategies

Figure 7: The interaction between optimization and simulation

Scenario Parameter

For the optimization and the comparison of different strategies we used a Poisson arrival
stream where the inter-arrival times are independent and identically distributed according
to an exponential distribution with different arrival rates λ. The weight class of arriving
aircraft is determined randomly such that the arrival stream consists of 23% heavy, 72%
medium and 5% of light aircraft. These are realistic data for larger airports.

The separation times that successive aircraft have to keep are determined by air traffic
regulations. Table 4 shows data that were published for a major German hub. As the

trailing
heavy medium light

le
ad

in
g heavy 4 5 6

medium 2,5 2,5 5
light 2,5 2,5 2,5

Table 4: Separation distances in nautical miles

distances are typically given in nautical miles, we have to transform them into seconds.
If we assume an average speed of 145kn for heavy aircraft, 140kn for medium sized and
130kn for light aircraft, the separation time at the runway threshold can be approximated
by the times that are given in Table 5. These values were used for the separation matrix D
as given in (1).
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trailing
heavy medium light

le
ad

in
g heavy 124 153 191

medium 87 89 163
light 87 89 94

Table 5: Aircraft separation in seconds

Comparison of Different Strategies

We compared three different strategies. The first one is a threshold strategy of the reduced
type described in Section 3. It was determined using the local search algorithm with a
Poisson arrival stream with arrival rate λ = 69.23 aircraft per hour. The second strategy is
the generalized JLL strategy δA∗B∗ as given in Table 3. It was obtained from optimization
by genetic algorithm using a Poisson stream with λ = 67.35. Finally, we included as an
additional benchmark the simple JLL strategy as described in (6).

We fed these strategies into our simulation tool and estimated the average waiting time
for different arrival rates varying from about 45 aircraft per hour up to more than 70. For
each arrival rate, the simulation was carried on until the relative error of the estimated values
as determined by the 95% confidence interval was below 5%. Results are shown in Figure 8.
Typically, the simulated average waiting times first grow moderately with increasing arrival
rate. When the capacity of the system is reached the waiting times explode, the system
becomes congested. The actual capacity, i.e. the arrival rate that still can be handled by the
system, obviously depends on the routing strategy used.

Figure 8 shows that JLL performs well for low arrival rates where aircraft often find
empty runways. In this situation the threshold strategy creates larger waiting times. This
picture changes as the arrival rate gets beyond 65 aircraft per hour. Here both our optimized
strategies are much better than JLL. In particular, the generalized JLL strategy seems to be
very good under all arrival rates.

However, these are only simulations with an artificial scenario in which arrival rates and
type mix are assumed to be constant during the simulation run. In realistic arrival data both
arrival rates and type mix change drastically during a day. In Figure 9, the upper oscillating
curve shows the typical pattern of the arrival rate over 24 hours.

We therefore performed an additional simulation study with the simulation tool
SimmodTM that is often used for airport capacity analysis with more realistic scenarios.
The data used originate from a major German airport, they also include starting aircraft that
use the same runways as the arriving ones. Instead of JLL, we used as a benchmark an
example of an actual manual routing as it was performed by a flight guidance. Figure 9
shows the additional delay for arriving aircraft as it occurred under the manual routing and
under a strategy of the reduced threshold type which was optimized by local search with
these arrival data. The waiting times here are moving averages over intervals of 15 minutes.

In this study, the threshold strategy was superior to the manual routing in practically
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Figure 8: Average waiting times for increasing arrival rates

all situations, the reduction of delay is significant. Not shown in the Figure are delays for
departures which were included in the SimmodTM scenario. It turned out that these could
also be reduced if landing aircraft were assigned by the threshold strategy.

At the time of writing, the corresponding results for the generalized JLL strategy were
not yet available.

6 CONCLUSION

We have have derived two types of dynamic strategies for the assignment of arriving aircraft
to runways. Both offer significant potential for the reduction of delays occurring in heavy
traffic situations. Due to their simple structure both type of strategies can be evaluated in
real time and could be included into arrival management tools and decision support systems
for air traffic management.

We restricted ourselves to an assignment of single aircraft in a first-come first-served
fashion. These assignments can be made at an early stage of the arrival process so that air
traffic management has enough time to calculate a safe trajectory to the assigned runway.
Furthermore first-come first-served methods are considered as fair by the parties involved,
especially the airlines, which is important for the acceptance of a computer based arrival
management.

The simulation based approach used for the determination of our strategies also allows
for an easy inclusion of additional constraints, e. g. dependencies between runways or ad-
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Figure 9: Comparison of delays under a manual routing and the routing according to a
threshold strategy.

ditional weight classes.
Our future research will concentrate on strategies that adapt themselves to the changing

arrival patterns as they appear in real operations. Further simulation studies under realistic
scenarios have to be carried out.
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