
Sequential Reservoir Sampling with a
Non-Uniform Distribution

M. KOLONKO
Technical University of Clausthal

D. WÄSCH
Technical University of Clausthal

Nov. 2004

We present a simple algorithm that allows sampling from a stream of data
items without knowing the number of items in advance and without having to
store all items in main memory. The sampling distribution may be general,
i. e. the probability of selecting a data item i may depend on the individual
item. The main advantage of the algorithms is that they have to pass through
the data items only once to produce a sample of arbitrary size n.

We give different variants of the algorithm for sampling with and without
replacement and analyze their complexity. We generalize earlier results of
Knuth on reservoir sampling with a uniform sampling distribution. The gen-
eral distribution considered here allows to sample an item with a probability
equal to the relative weight (or ’fitness’) of the data item within the whole
set of items.

Applications include heuristic optimization procedures such as genetic al-
gorithms, where solutions are sampled from a population with probability
proportional to their fitness.

1. Introduction

In many statistical procedures a random sample of given size n has to be drawn from a
set of data items D := {d1, . . . , dN}. If each item has the same chance to be drawn this
is the classical problem of random sampling, see [Dev86], chapt. XII, for an overview.

In this paper we present algorithms that are able to take samples when N and the
set D are not known in advance. Moreover, the probability for sampling a data item
i ∈ D may depend on its ’weight’ f(i) (and on the weights of the items drawn before).
Our algorithms need only one pass through the data set, where the items are visited one
after another in some given order. They are ’reservoir algorithms’ (see [Vit85]) using

1

a list or an array as a ’reservoir’ which (after an initialization) always contains a valid
random sample of the data items seen so far.

The algorithms may be used if the amount of data is too large to fit into memory
and access operations are time consuming or costly, e. g. if the data have to be read
from magnetic tapes or remote data bases via Internet. Another application arises in
heuristic optimization procedures, where solutions often have to be drawn randomly from
a ’population’ or ’neighborhood’. Genetic algorithms, e. g., are a popular method for
finding the maximum of some reward or ’fitness’ function f over a set of solutions. The
algorithm runs through a sequence of sets of solutions, so-called populations. Given the
n−th population, new solutions (’off-spring’) are produced from it by genetic operations
like mutation or crossover. Often, the n + 1-st population is then formed by randomly
selecting solutions from the off-spring, each with a probability proportional to its fitness
relative to the whole set (’survival of the fittest’). Production of off-spring and reduction
to the next population are usually two separate steps. Our algorithms allow to perform
the selection of the new population already during production without having to store
all off-spring. The sequence of new solutions is treated as a stream of data from which
the surviving solutions are sampled. This even allows a type of genetic algorithm with
just one continuously evolving population.

Our algorithms may also be applied in simulated annealing which is a local search
method where new solutions are drawn randomly from the neighborhood of the present
solution. Often, this neighborhood is generated successively by applying a set of feasible
’moves’ to the present solution and the probability for selecting solution i may depend on
a desirable property f(i) of the solution. Our algorithms allow to sample new solutions
during the generation of the neighborhood without having to store them in an extra
data structure.

In all these situations, our one pass algorithms avoid additional data structures for
storing the items and/or extra passes through the data set. The price one has to pay
is the generation of additional random numbers. Simulations indicate that even if the
data set D fits into memory, our algorithms may be faster than standard algorithms for
very large and very small sample sizes n.

For the case of a uniform sampling distribution, [Knu81], p. 138 (see also [Dev86],
XII.5) gives a reservoir algorithm that takes one pass through the data set. The first n
items are stored in the reservoir which has n positions. Then, the t-th data item visited
is taken into the reservoir with probability n/t. The new item is written at a random
position, overriding items previously selected. In [Knu69] (p. 123), another version of the
reservoir algorithm was given where an auxiliary random number uniformly distributed
over the interval (0, 1) is drawn for each data item. The sample consists of those items
with the n largest auxiliary values.

In [Vit85] and [Li94] these reservoir algorithms are further refined: after the basic
algorithm has selected the t−th item for the reservoir, it will visit a number St of
items before it actually selects the next item for the reservoir. The distribution of the
random number St is easily calculated and its simulation may take less time than than
by inspecting all items. Thus, sampling may skip the next St items completely and take
the St +1−st into the reservoir. Depending on the storage medium such a ’fast-forward’

2

operation may increase the speed of the algorithm considerably.
Our algorithms for a general sampling distribution use similar techniques. Algorithm

WRS (Weighted Reservoir Sampling) is based on the approach of [Knu69]. We use expo-
nentially distributed auxiliary values with the parameter of the exponential distribution
being the weight (’fitness’) of the item. Then the largest auxiliary values determine the
sample. This algorithm also has a fast-forward version WRS-FF (WRS-Fast-Forward)
that is faster than WRS if the sample size n is small compared to the number N of
data items. Our fastest algorithm WRS-FFX (WRS-FF Extended) uses algorithm WRS
in the beginning and then switches to WRS-FF. For sample size n = 1 we are able to
give an algorithm WSS (Weighted Single Sampling) similar to [Knu81] which needs no
auxiliary values and which may also be used for sampling with replacement.

The paper is organized as follows: In Section 2, we first define precisely what is meant
by sampling according to a weight function. We then present our basic algorithm WRS
for sampling without replacement and its fast-forward variant WRS-FF in Section 3.
Their expected run times are discussed in detail and some empirical results are given
in Section 4. The combination WRS-FFX of the two algorithms, which is technically
more involved, is presented in Section 5. In the last two sections, special algorithms for
samples of size one (Section 6) and for sampling with replacement (Section 7) are given.
Some basic facts about exponential distributions are collected in Appendix A.

2. Sampling with a Non-Uniform Distribution

For a simpler presentation, we identify the set of data items with the set D := {1, . . . , N}
and assume that these items are visited in the order 1, 2, , . . . , N. Let

f : D → (0,∞)

be a weight function and assume that f(i) can only be calculated after the i−th item
has been read. The aim is to select item i with a probability proportional to the weight
f(i). If we know in advance that f(i) = const, i ∈ D, then we are in the situation of
[Knu69] which we shall refer to as the uniform case.

Let the required sample size be n ≥ 1.

2.1. Sampling without replacement

Here, we have to assume that 1 ≤ n ≤ N. Let

D̄m := {(i1, . . . , im) ∈ Dm | iµ 6= iν for all 1 ≤ ν < µ ≤ m}, 1 ≤ m ≤ n (1)

be the set of possible results from sampling m times from D without replacement. Let
the required random sample be (X̄1, . . . , X̄n). After the selection of the first 1 ≤ m < n
items, the (m+1)-st item should be selected according to its weight within the remaining
set of items, i. e.

P[X̄m+1 = i | X̄1 = i1, . . . , X̄m = im] :=
f(i)∑

j=1,...,N
j /∈{i1,...,im}

f(j)
=

f(i)
F (N)−∑m

l=1 f(il)
(2)

3

for (i1, . . . , im, i) ∈ D̄m+1 and 0 otherwise. Here we have put F (t) :=
∑t

j=1 f(j). As
the first item has the distribution P(X̄1 = i) = f(i)/F (N), the joint distribution of
(X̄1, . . . , X̄n) is

P((X̄1, . . . , X̄n) = (i1, . . . , in))

=
f(i1)
F (N)

· f(i2)
F (N)− f(i1)

· f(i3)
F (N)− f(i1)− f(i2)

· . . . · f(in)
F (N)−∑n−1

l=1 f(il)

=
N∏

j=1

f(ij)

F (N)−∑j−1
l=1 f(il)

(3)

for any (i1, . . . , in) ∈ D̄n.

2.2. Sampling with Replacement

Let the random sample be (X1, . . . , Xn). Sampling with replacement means that the
variables are independent each with the same marginal distribution

pi :=
f(i)∑N

j=1 f(j)
=

f(i)
F (N)

, i ∈ D. (4)

This distribution gives each item its relative weight within the whole set of data. The
resulting joint distribution of the sample is

P((X1, . . . , Xn) = (i1, . . . , in)) =
n∏

j=1

pij =
n∏

j=1

f(ij)
F (N)

=
f(i1) · . . . · f(in)

F (N)n
(5)

for any (i1, . . . , in) ∈ Dn.

3. Algorithms for Sampling without Replacement

In contrast to sampling with replacement, the probability (3) for f 6≡ const is not
invariant under permutations of the sample and the marginal distributions of X̄1, . . . , X̄n

are not identical. E. g., for an item i with a relatively large weight f(i), P(X̄1 = i) will
be larger than P(X̄n = i). So the algorithms not only have to decide which items should
be in the sample, but also in which order. In particular, the order achieved should be
independent of the order in which the items are visited. In our algorithms, all these
tasks are solved by the auxiliary values drawn for each item.

The auxiliary value of data item i is an observation of an exp(f(i))−distributed ran-
dom variable, where exp(α) is the exponential distribution with parameter α, see also
Appendix A. Random numbers v from the exp(f(i))−distribution can be generated by
the inversion principle as

v := − log(Random())/f(i), (6)

where Random() is a random number generator that produces random numbers accord-
ing to U(0, 1), the uniform distribution on (0, 1). Note that these numbers have to be
generated independently from each other.

4

ALGORITHM:
(Step 1 takes the first n data items into the reservoir:)
FOR i=1 TO n DO

read item i and calculate weight f := f(i)
generate exp(f)-distributed random number v
create a list element (i,v) and insert it into Res

ENDFOR
(Step2 processes data items n + 1, n + 2, . . . :)

. . .
OUTPUT:
Data Items Res[1].i, . . . , Res[n].i

Figure 1: The Framework for Sampling Without Replacement

3.1. Initialization Step 1

Both algorithms in this section will use an ordered list Res = (Res[1], ..., Res[n])
as reservoir, where each element can hold an item Res[m].i and the auxiliary value
Res[m].v. The list will always be ordered such that Res[1].v ≤ . . . ≤Res[n].v and
will be empty initially. Res is an abstract list which will usually be implemented as a
heap, where the root contains the item with the maximum auxiliary value. This can be
done, as our algorithms mainly need access to the item with the largest auxiliary value
in the reservoir. At any time during the execution of the algorithm, (Res[1].i, ...,
Res[n].i) forms a valid sample from the items seen so far, which we obtain by reading
out the heap in ascending order of the auxiliary values. We will come back to this point
in Section 4, where we discuss the complexity of the algorithms.

In a common initialization step (Step 1), both algorithms take the first n data items
into the reservoir ordered according to their auxiliary values. The algorithms differ in
the way they process the remaining N − n items in Step 2, see Figure 1. Here, the
function EOF() returns true if there are no more data items to be read, else false.

3.2. Algorithm WRS

After the initialization Step 1, our algorithm WRS continues to observe exponentially
distributed auxiliary values for each data item visited with the parameter of the dis-
tribution equal to the weight of the item. The reservoir always contains the n items
with the smallest auxiliary values seen so far. Figure 2 gives the details of Step 2 for
algorithm WRS in the framework of Figure 1.

The following Theorem shows that algorithm WRS produces samples with the distri-
bution as required in (3).

Theorem 3.1. Let (Ȳ1, . . . , Ȳn) denote the items contained in the reservoir list of Algo-

5

(Step2 :)
WHILE NOT EOF()

read item i and calculate weight f := f(i)
generate exp(f)-distributed random number v
IF v < Res[n].v THEN (take item i into reservoir)

delete Res[n] (the element with maximal v-value)
create a list element (i,v) and insert it into Res

ENDIF
ENDWHILE

Figure 2: Algorithm WRS: Sampling Without Replacement

rithm WRS after visiting all N data items. Then

P((Ȳ1, . . . , Ȳn) = (i1, . . . , in)) =
n∏

j=1

f(ij)

F (N)−∑j−1
l=1 f(il)

for all (i1, . . . , in) ∈ D̄n, i. e. the result of the algorithm has the same distribution as the
theoretical sample (X̄1, . . . , X̄n) in (3).

For the proof, we use the following simple Lemma on exponentially distributed random
variables:

Lemma 3.2. Let Zj be an exponentially distributed random variable with parameter
αj > 0 for j = 1, . . . , M and assume that Z1, . . . , ZM are independent. Then

P(Z1 ≤ Z2 ≤ · · · ≤ ZM) =
M−1∏

j=1

αj

(αj + αj+1 + · · ·+ αM)
(7)

(For a proof of this Lemma, see Appendix A.)

of Theorem 3.1. Assume that n < N , the necessary modifications for the case n = N
are easy to see. Recall that we assume to visit the data items 1, . . . , N in that order. Let
V1, . . . , VN be the auxiliary values, i.e. V1, . . . , VN are independent random variables,
where Vt has distribution exp(f(t)), 1 ≤ t ≤ N . Let (i1, . . . , in) ∈ D̄n and put Zj := Vij

for 1 ≤ j ≤ n and

Zn+1 := min{Vm | 1 ≤ m ≤ N,m /∈ {i1, . . . , in}}.
Note that as i1, . . . , in are fixed, Z1, . . . , Zn, Zn+1 are independent. Zj has distribution
exp(αj), αj := f(ij), for 1 ≤ j ≤ n and from (28) we have that Zn+1 again has an
exponential distribution with parameter

αn+1 :=
∑

j=1,...,N
j /∈{i1,...,in}

f(j) = F (N)−
n∑

l=1

f(il).

6

From the definition of the algorithm we see that

P(Ȳ1 = i1, Ȳ2 = i2, . . . , Ȳn = in)
= P(Vi1 ≤ Vi2 ≤ · · · ≤ Vin ≤ min{Vm | 1 ≤ m ≤ N, m /∈ {i1, . . . , in}})
= P(Z1 ≤ Z2 ≤ · · · ≤ Zn ≤ Zn+1).

With M := n + 1, the assertion now follows from the Lemma, as we have

αj

(αj + · · ·+ αM−1 + αM)
=

f(ij)
f(ij) + · · ·+ f(in) + F (N)−∑n

l=1 f(il)
=

f(ij)

F (N)−∑j−1
l=1 f(il)

. (8)

Note, that if we have f ≡ const, then (6) shows that the n smallest values of the
auxiliary exp(const)−distributed values are exactly those for which the n largest uniform
random numbers have been generated. Hence, in this case, our algorithm produces the
same sample as the reservoir algorithm of [Knu69]. The additional evaluations of the
log-function in (6) are the price for not knowing f ≡ const in advance.

3.3. An Algorithm with ’Fast-Forward’

As was mentioned in the Introduction, the sampling in the uniform case can be acceler-
ated considerably if the number St of items not taken into the reservoir is simulated and
if these items are simply skipped. In our general case we cannot skip items entirely, as
we have to know their weights to obtain the distribution (3). Nevertheless we can save
some time if we do not have to draw random numbers for each item.

First, we have to analyze the stochastic behavior of algorithm WRS more closely. We
assume that the stream of data items is infinite. Let (Vt)t≥1 be a sequence of independent
random variables where Vt has distribution exp(f(t)) as in the proof of Theorem 3.1.
(Vt)t≥1 may be looked at as a stochastic process with discrete ’time’ t. To keep track of
the reservoir contents we have to observe this process at those times where an item is
selected. To give a formal definition, let x[] = (x[1], . . . , x[m]) denote the vector of values
from x = (x1, . . . , xm) in ascending order. Then x[n] is the largest of the n smallest
values of x. Let IN denote the positive integers.

In algorithm WRS, a new item is put into the reservoir each time Vt is smaller than the
threshold represented by the present largest value in the reservoir. After the initialization
Step 1 in Figure 1, the reservoir contains the auxiliary values V1, . . . , Vn. With the
definition given above, R0 := (V1, . . . , Vn)[n] is the threshold after initialization. Let

S(m, v) := min{k > 0 | Vm+k < v}, m ∈ IN, v > 0, (9)

then S(m, v)− 1 is the number of items skipped after the m−th item is processed, if the
threshold of the reservoir is v at that time. Define T0 := n, and

Tl+1 := Tl + S(Tl, Rl),
Rl+1 := (V1, . . . , Vn, VT1 , . . . , VTl+1

)[n]

(10)

7

for integers l ≥ 0. Then Tl is the l−th item selected for the reservoir in Step 2 of
algorithm WRS and Rl is the largest auxiliary element in the reservoir after Tl has been
processed. Let

τ(N) := max{l ∈ IN | Tl ≤ N}
be the total number of selections in Step 2. Then the final sample consists of the items
belonging to the n smallest auxiliary values of

(V1, . . . , Vn, VT1 , . . . , VTτ(N)
).

To simulate the selection behavior of algorithm WRS in Step 2 for a fast-forward oper-
ation it is therefore sufficient to simulate the embedded stochastic process

Wl := (Tl, VTl
), l = 0, 1, 2, . . . (11)

for a fixed initialization (V1, . . . , Vn) = (v1, . . . , vn). The next Theorem gives the distri-
bution of this process and shows how to simulate it.

Theorem 3.3. For all l ≥ 0, Wl+1 is independent from V1, . . . , Vn,W0, . . . ,Wl−1 given
Tl, Rl. The exact transition probability of the process is given by

P
(
Tl+1 = k, VTl+1

≤ u | T1 = m1, . . . , Tl−1 = ml−1, Tl = ml,

V1 = v1, . . . , Vn = vn, VT1 = u1, . . . , VTl
= ul

)

= P
(
Tl+1 = k, VTl+1

≤ u | Tl = ml, Rl = r
)

= P
(
Vk ≤ u | Vk ≤ r

)
·P

(
S(ml, r) = k −ml

)

for Rl as defined in (10), r := (v1, . . . , vn, u1, . . . , ul)[n], and 0 ≤ ml ≤ k. Moreover

P(S(ml, r) ≤ k) = 1− e−r
Pk

j=1 f(ml+j) (12)

and

P(Vk ≤ x | Vk ≤ r) =
1− e−xf(k)

1− e−rf(k)
(13)

for 0 ≤ x ≤ r and k ∈ IN.

Proof. With the abbreveations

T̄l := (T1, . . . , Tl), m̄ = (m1, . . . ,ml) and
V̄l := (V1, . . . , Vn, VT1 , . . . , VTl

), ū := (v1, . . . , vn, u1, . . . , ul)

we obtain

P
(
Tl+1 = k, VTl+1

≤ u | T̄l = m̄, V̄l = ū
)

(14)

= P
(
VTl+1

≤ u | Tl+1 = k, T̄l = m̄, V̄l = ū
)
·P

(
Tl+1 = k | T̄l = m̄, V̄l = ū

)
.

8

With r := (v1, . . . , vn, u1, . . . , ul)[n], ml ≤ k the condition in (14) fulfills

Tl+1 = k, T̄l = m̄, V̄l = ū

⇐⇒ Tl+1 = k, T̄l = m̄, V̄l = ū, Rl = r

⇐⇒ Vml+1 ≥ r, Vml+2 ≥ r, . . . , Vk−1 ≥ r, Vk < r, T̄l = m̄, V̄l = ū, Rl = r

(15)

From (15) and the independence of the Vm we therefore obtain

P
(
VTl+1

≤ u | Tl+1 = k, T̄l = m̄, V̄l = ū
)

= P
(
Vk ≤ u | Vk < r

)
. (16)

Similarly, for the last expression in (14)

P
(
Tl+1 = k | T̄l = m̄, V̄l = ū

)
= P

(
Tl+1 = k | T̄l = m̄, V̄l = ū, Rl = r

)

= P
(
Vml+1 ≥ r, Vml+2 ≥ r, . . . , Vk−1 ≥ r, Vk < r | Tl = ml, Rl = r

)

= P
(
Vml+1 ≥ r, Vml+2 ≥ r, . . . , Vk−1 ≥ r, Vk < r

)

= P
(
S(ml, r) = k −ml

)
.

We have further

P
(
S(m, r) > k

)
= P

(
Vm+1 ≥ r, Vm+2 ≥ r, . . . , Vm+k ≥ r

)

= e−rf(m+1) · e−rf(m+2) · . . . · e−rf(m+k)

= e−r
Pk

j=1 f(m+j)

proving (12) and for x ≤ r

P(Vk ≤ x | Vk ≤ r) =
P(Vk ≤ x)
P(Vk ≤ r)

=
1− e−xf(k)

1− e−rf(k)

To perform a ’fast-forward’, we have to simulate the conditional distribution of (Tl+1, VTl+1
)

given the contents of the reservoir after Tl has been inserted. Theorem 3.3 shows that
this is the conditional distribution of (Tl+1, VTl+1

) given (Tl, Rl) = (m, r). We may then
proceed as follows: We fist simulate S(m, r) with the distribution given by (12). This
can be done by inversion, where we add the weights f(m + 1), f(m + 2), . . . , f(m + k)
until

k∑

j=1

f(m + j) ≥ − log(Random())/r (17)

for the first time. Note that the right-hand side of (17) is an exp(r)−distributed random
variable. After we obtained k = S(m, r) item m + k is taken into the reservoir and we

9

(Step 2:)
put r:=Res[n].v
generate exp(r)-distributed random number y and set F := 0
WHILE NOT EOF()

read item i and calculate weight f := f(i)
F := F + f
IF F > y THEN (take item i into the reservoir)

v := -log(1-Random()·(1-exp(-f·r)))/f (the auxiliary value, see (13))
delete Res[n] (the element with maximal v-value)
create a list element (i,v) and insert it into Res
put r:=Res[n].v
generate exp(r)-distributed random number y and set F := 0

ENDIF
ENDWHILE

Figure 3: Algorithm WRS-FF: Step 2 of the Fast-Forward Variant

have to draw its auxiliary value which must have a conditional distribution as in (13).
This is obtained via inversion by

− log
(
1− Random() · (1− e−r·f(m+k))

)

f(m + k)
. (18)

We call this algorithm WRS-FF. It starts with the initialization Step 1 as in Figure 1,
the formal definition of its Step 2 is given in Figure 3.

4. Expected Runtimes of Algorithms WRS and WRS-FF

As in [Vit85] Theorem 1, it it clear, that every algorithm for this sampling problem
is a type of reservoir algorithm. For the uniform case, i. e. if f ≡ const is known,
Vitter showed that if the time for reading (and skipping) data items is ignored, then
O(n(1+log(N/n))), the expected number of selections, is a lower bound for the expected
runtime of reservoir algorithms. It is attained for the fast-forward algorithms in [Vit85]
and [Li94].

To produce a sample with distribution as given in (3), any algorithm has to visit each
item i = 1, . . . , N individually, calculate its weight and determine whether the item is
taken into the reservoir, which is done by a comparison of two reals in our algorithms.
This is necessary for all N items, for otherwise, if the algorithm would operate only on
a subset of the data set, then this subset itself must be a representative sample, but this
is just what the algorithm has to produce.

Hence, a linear effort O(N) is common to all algorithms. For a more subtle study of
the expected runtimes we shall therefore drop this common term from our calculation.

10

For a more subtle study of the expected runtimes we shall therefore drop this common
term from our calculations.

For the complexity of keeping the reservoir up to date, we may argue as in [Vit85]: the
t−th item must become a member of the reservoir with a probability qt, to be calculated
below. Hence the expected number of necessary selections is

∑N
t=1 qt. As was pointed out

before, the marginal distributions of the theoretical sample (X̄1, . . . , X̄n) from (3) are
neither identical nor uniform. Hence, a sampling algorithm also has to insert the item
at a suitable position of the sample. This needs at least time O(log m) on the average,
where m is the length of the present sample. In the uniform case, this step is implicitly
performed, as any random permutation of the sample has the same distribution.

Neglecting the linear effort as mentioned above, this yields a lower bound for the
average time complexity of a general reservoir algorithm of

O
(n∑

t=1

qt log t +
N∑

t=n+1

qt log n
)
. (19)

To determine qt, the probability that the t−th item enters the reservoir, we may
assume that all auxiliary random values (v1, . . . , vN) produced by the algorithm are
different from each other. If we do not have any information about the weight function
f, then all permutations of (v1, . . . , vN) are equally likely to appear. Therefore we have

qt =

{
1 for t ≤ nPn

k=1(t−1)!
t! for t > n

=

{
1 for t ≤ n
n
t for t > n

(20)

Here,
∑n

k=1(t− 1)! is the number of possible permutations of (v1, . . . , vt) such that the
t-th entry is among the n smallest. Note that the probability qt for inserting item t into
the reservoir when nothing is known about the weight function is the same as in the
uniform case, see [Knu81]. We use

N∑

t=n+1

qt =
N∑

t=n+1

n

t
≈ n log

N

n
. (21)

Thus (19) becomes

O

(
log n! + n log n log

N

n

)
⊂ O

(
n log n

(
1 + log

N

n

))
. (22)

Compared to the lower bound O(n(1 + log(N/n))) for the uniform case (see [Vit85]) we
have the additional factor log n caused by the sorting.

4.1. The Expected Runtime of Algorithm WRS

As mentioned before, we assume that the ordered list Res[1],...,Res[m] is imple-
mented as a heap. Then operations ’insert’ and ’delete the largest element’ each take
time chp log m, where m is the length of the list and chp is the time constant for a single

11

update step in the heap. Let cexp be the time necessary to produce an exponentially
distributed number.

For Step 1 in Figure 1 we obtain an expected runtime

T1(n) ≈
n∑

t=1

(cexp + chp · log t) = ncexp + chp · log n! (23)

which is in O(n log n).
In Step 2 algorithm WRS needs to generate one random number for each data item.

For each update of the reservoir it needs one insert and one delete-operation. Finally,
the sample has to be extracted from the heap taking time

∑n
m=1 chp log m. Therefore

we obtain as expected runtime

TWRS(N,n) ≈ T1(n) + (N − n)cexp +
N∑

t=n+1

qt · 2chp · log n + chp

n∑

m=1

log m

≈ Ncexp + chp

(
2 log n! + 2n log n · log

N

n

) (24)

which is in O
(
N + log n! + n log n log N

n

)
.

4.2. Expected Runtime of Algorithm WRS-FF

As above, algorithm WRS-FF needs time T1(n) to process the first n items. Then in
Step 2, for each inserted item two random-numbers have to be generated: the ‘skip-
value’ y on the right hand side of (17), which is exp(r)-distributed and takes time cexp

and the conditional auxiliary value v from (18) which takes time ccond. Here we neglect
the addition of the fitness-values in (17). Again, the final sample has to be extracted
from the heap. As the probability to select an item in WRS-FF is the same as in WRS,
we obtain

TWRS−FF(N, n) ≈ T1(n) +
N∑

t=n+1

qt(cexp + ccond + 2chp log n) + chp

n∑

m=1

log m

≈ ncexp

(
1 + log

N

n

)
+ chp

(
2 log n! + 2n log n log

N

n

)
+ ccondn log

N

n
(25)

Therefore the expected runtime of WRS-FF lies in

O
(

log n! + n log n log
N

n

)
.

which is the lower bound from (22). A detailed comparison between TWRS and TWRS−FF

shows that approximately

TWRS(N, n) > TWRS−FF(N, n) ⇐⇒
N
n − 1
log N

n

> 1 +
ccond

cexp
(26)

12

10

100

1000

10000 100000 1e+06

WRS

WRS−FF

STD

N

time
per sample
(msec)

= # data items

Figure 4: Runtimes of the Algorithms WRS, WRS-FF and STD as Function of N

As can be seen from (26) and the empirical results below, WRS-FF is superior to WRS
only for certain parameter values. This will be used in the hybrid algorithm WRS-FFX
in section 5.

4.3. Empirical Comparison of Algorithms WRS and WRS-FF

To get an idea of how fast our algorithms really are, we have performed simulation
runs. We have compared WRS and WRS-FF to a two-pass standard algorithm STD
that needs to read the data into memory. It turned out that even in this situation one
of our algorithms was considerably faster than STD for n ¿ N .

The algorithm STD passes once through the data, reads it into memory, collects
information about the weights and then performs n selections using inversion to simulate
the sampling probabilities (2). To improve the runtime of STD we used a binary tree for
the search process during inversion as recommended by [Dev86], sec. III.2.3. Note that
STD is a sophisticated version of the ’roulette-wheel selection’ sometimes recommended
for genetic algorithms, e. g. [Ree03] p. 65.

Figure 4 shows the average runtimes (in milliseconds) per sample for a fixed sample
size n = 10 000 as a function of N ≥ n. Note that we used a logarithmic scale on both
axes. All values are averages over 100 different weight functions, each sampled 100 times.
The weights f(i), i = 1, . . . , N were taken uniformly distributed over (0, 1).

In the experiments of Figure 4, WRS-FF was faster than STD for large values of
N , i. e. for n ¿ N . For n ≈ N, both WRS and WRS-FF were faster than STD.
Also WRS is better than WRS-FF for small values of N as was to be expected from
(26). In our implementation, TWRS(N, n) is smaller than TWRS−FF(N, n) for N ≤ 4.7n
(approximately), which means by (26) ccond ≈ 1.4cexp.

Similar pictures were obtained for other values of n and other types of randomly
produced weights (e. g. normally distributed or discrete, see also Figure 5).

13

0.1

1

100 1000

WRS

WRS−FF

WRS−FFX

N

(msec)
per sample
time

= # data items

Figure 5: Runtimes of the Algorithms WRS, WRS-FF and WRS-FFX as Function of N

Note that STD needs much more space than WRS and WRS-FF: STD needs space
for the N data items and for 2N real values for the binary search tree, whereas our
algorithms only need space for n data items and n auxiliary values.

All algorithms have been implemented in C++, using GCC 3.2.3 on an AMD Opteron 244
under Debian Linux with kernel version 2.6.3.

5. Switching Between Algorithms WRS and WRS-FF

Figure 4 suggests a combination of the two algorithms WRS and WRS-FF which is calles
WRS-FFX. It processes the first k > n items by algorithm WRS, then to use algorithm
WRS-FF for the remaining N − k items. To find an optimal value k, we first calculate
the expected runtime of WRS-FFX.

TWRS−FFX(N, n, k) = TWRS(k, n) +
N∑

t=k+1

qt(cexp + ccond + 2chp log n)

= 2chp log n! + kcexp + n
N∑

t=k+1

1
t
(cexp + ccond) + 2chpn log n

N∑

t=n+1

1
t

TWRS−FFX(N, n, k) is minimized for k with

k ≤ n

(
1 +

ccond

cexp

)
< k + 1.

As this expression is actually independent of N and the weight function, we may use
it as parameter of the algorithm WRS-FFX. In our implementation ccond ≈ 1.4cexp and
therefore k ≈ 2.4n is the right level for switching.

14

ALGORITHM:
F := 0
WHILE NOT EOF()

read item i and calculate weight f := f(i)
F := F + f
IF F·Random() < f THEN Res = i

ENDWHILE
OUTPUT:
Data item Res

Figure 6: Algorithm WSS: Sampling One Element

Figure 5 shows simulation results with this value of k. Here, the sample size is fixed
to n = 100 and the Figure shows the average time per sample as function of the size
N of the data set. This time, the weights are uniformly distributed over {1, 2, . . . , 10},
while the other parameters are as in Figure 4. Note that WRS-FFX is identical to WRS
for N ≤ k. Algorithm WRS-FFX is clearly at least as fast as WRS and WRS-FF for all
values of N .

6. Drawing Samples of Size One

If only n = 1 item has to be drawn, the initialization Step 1 in Figure 1 can be skipped
and the sorted list Res is just a variable. After the (t− 1)−th item has been processed,
the reservoir contains the item with auxiliary value min{V1, . . . , Vt−1}. The probability
that the t−th item goes into the reservoir is therefore

P(Vt < min{V1, . . . , Vt−1}) =
f(t)
F (t)

(see Lemma 3.2 and Eq. (28) below). Hence we may simplify algorithm WRS by select-
ing the t−th item with that probability. This yields algorithm WSS (Weighted Single
Selection) given in Figure 6. It is more in the spirit of [Knu81] and has a better expected
runtime than TWRS(N, 1), as the constant cexp is replaced by the smaller constant for a
call to Random().

The following Theorem shows that WSS produces the right distribution.

Theorem 6.1. Let Y be the item in Res after all items have been visited by algorithm
WSS. Then

P(Y = i) =
f(i)

F (N)
, for i = 1, . . . , N

as required by (3) for n = 1.

15

Proof. Let Zi := 1 if item i is selected and Zi = 0 otherwise for i = 1, . . . , N. Then
Z1, . . . , ZN are independent with P(Zi = 1) = f(i)/F (i) and P(Zi = 0) = F (i−1)/F (i).
As Res contains the last item selected, we have for i ∈ {1, . . . , N}

P(Y = i) = P(Zi = 1, Zi+1 = 0, . . . , ZN = 0)

=
f(i)
F (i))

F (i)
F (i + 1)

· . . . · F (N − 1)
F (N)

=
f(i)

F (N)

The fast-forward idea may also be applied to algorithm WSS. If the t−th item has
been selected for the reservoir, the next item to be selected is given by the random
variable

S(t) := min
{

k ∈ IN | Uk <
f(t + k)
F (t + k)

}
(27)

where U1, . . . , UN are i.i.d. and U(0, 1)−distributed.

Theorem 6.2. For t, k ∈ IN we have

P(S(t) ≤ k) = 1− F (t)
F (t + k)

and S(t) may be simulated by

min{l ∈ IN | F (t + l) ≥ F (t)/U}
where U is U(0, 1)−distributed.

Proof. We have

P(S(t) > k) = P(
f(t + 1)
F (t + 1)

≤ U1, . . . ,
f(t + k)
F (t + k)

≤ Uk)

=
F (t)

F (t + 1)
· . . . · F (t + k − 1)

F (t + k)
=

F (t)
F (t + k)

.

The second assertion follows form the inversion formula and the fact that U and 1− U
have the same distribution.

Figure 7 shows the algorithm WSS-FF. It uses only log N calls to Random() in expec-
tation. Therefore WSS-FF is faster than WSS for all N ≥ 1.

7. A Reservoir Algorithm for Sampling with Replacement

For sampling with replacement we may use an algorithm for sample size 1, e. g. WRS-FF,
and run n instances in parallel. This yields algorithm WRS-WR (WRS With Replace-
ment) in Figure 8. It uses an array (Res[1], ..., Res[n]) of data items as reservoir
and an array (Ft[1], ..., Ft[n]) for real numbers. Note that the first item is taken
into all places of the reservoir. Apart from reading the items and evaluating their weights,
the algorithm needs n log N calls to the random number generator in expectation.

16

ALGORITHM:
F := 0; Ft := 0
WHILE NOT EOF()

read item i and calculate weight f := f(i)
F := F + f
IF F ≥ Ft THEN

Res := i
u := Random(); Ft := F/u

ENDIF
ENDWHILE
OUTPUT:
Data item Res

Figure 7: Algorithm WSS-FF: Sampling One Element with Fast-Forward

ALGORITHM:
F := 0;
FOR m = 1 TO n DO

Ft[m] := 0
ENDFOR
WHILE NOT EOF()

read item i and calculate weight f := f(i)
F := F + f
FOR m = 1 TO n DO

IF F ≥ Ft[m] THEN
Res[m] := i
u := Random(); Ft[m] := F/u;

ENDIF
ENDFOR

ENDWHILE
OUTPUT:
Data items Res[1], ..., Res[n]

Figure 8: Algorithm WRS-WR: Fast-Forward Sampling with Replacement

17

APPENDIX

A. EXPONENTIALLY DISTRIBUTED RANDOM VARIABLES

We recall some simple facts from elementary stochastics. The exponential distribution
exp(α) with parameter α > 0 has density t 7→ αe−αt and distribution function 1−e−αt for
t ≥ 0. If Z1, . . . , Zm are independent random variables where Zt is exp(αt) distributed,
t = 1, . . . , m, then min{Z1, . . . , Zm} has distribution

exp(α1 + · · ·+ αm). (28)

of Lemma 3.2. We first show by downward induction on l = M, M − 1, . . . , 1 that for
t ≥ 0

P(t ≤ Zl ≤ Zl+1 ≤ · · · ≤ ZM) =
M−1∏

j=l

αj

(αj + αj+1 + · · ·+ αM)
e−(αl+···+αM)t. (29)

For l = M we have P(t ≤ ZM) = e−tαM . As Zl−1 is independent from Zl, . . . , ZM , we
obtain for the induction step

P(t ≤ Zl−1 ≤ Zl ≤ · · · ≤ ZM)

=
∫ ∞

t
PZl−1

(ds) P(s ≤ Zl ≤ Zl+1 ≤ · · · ≤ ZM)

=
∫ ∞

t
αl−1e−sαl−1

M−1∏

j=l

αj

(αj + · · ·+ αM)
e−(αl+···+αM)s ds

=
M−1∏

j=l

αj

(αj + · · ·+ αM)
αl−1

∫ ∞

t
e−(αl−1+αl+···+αM)s ds

=
M−1∏

j=l−1

αj

(αj + · · ·+ αM)
e−(αl−1+αl+···+αM)t.

Now the assertion follows from (29) with l := 1, t := 0

References

[Dev86] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New
York, 1986.

[Knu69] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer
Programming. Addison-Wesley, Reading, Mass., 1969.

[Knu81] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer
Programming. Addison-Wesley, Reading, Mass., 2nd edition, 1981.

18

[Li94] Kim-Hung Li. Reservoir sampling algorithms of time complexity O(n(1 +
log(N/n))). ACM Transactions on Mathematical Software, 20(4):481–493, De-
cember 1994.

[Ree03] Colin Reeves. Genetic algorithms. In Fred Glover and Gary A. Kochen-
berger, editors, Handbook of Metaheuristics. Kluwer Academic Publishers,
Boston/Dordrecht/London, 2003.

[Vit85] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Transactions on
Mathematical Software, 11(1):37–57, March 1985.

19

