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Abstract. An efficient planning of future investments into a railway network re-
quires a thorough analysis of possible effects. Therefore a tool is needed for a cost-
benefit-analysis at an early stage of the planning process. We present a method
to obtain a cost-benefit-curve that shows the effect of investments (cost) on the
quality of the network measured by the waiting time of passengers (benefit).

This curve is obtained from the solutions of a multi-criteria time-table opti-
mization problem. Time-tables are evaluated with respect to the investment they
require and the benefit they bring to passengers in terms of shorter waiting times.
Moreover, we show how the notion of stability of a time-table under random de-
lays can be included into our approach. The analysis is done on a strategic level
without consideration of all operational details. We use genetic algorithms to find
approximate solutions to the optimization problem.

A prototype system is presently tested on a network of regional lines in Ger-
many. We report on the first very promising results.

1 Introduction

To increase the attractiveness of public transport it is important to improve
the quality of the service for the passengers and in particular to reduce the
travel and waiting times in the network. An improvement usually requires
a major investment, therefore the traffic providers have to decide how the
available money should be invested into the network to obtain a maximal
benefit for the passengers. This is an urgent issue e.g. on some of the regional
lines in the new states of Germany. Here, the condition of rails, crossings and
switches allows only a limited speed of the trains on some of the sections.
Usually there are different levels of investment possible e.g. one could simply
provide a level crossing with automatic barriers, renew a switch or rebuild
the whole section. Therefore, apart from deciding which sections are to be
modernized the level of modernization has to be fixed for each section.

This requires a detailed cost-benefit-analysis of possible investments tak-
ing into account the different investment scenarios, see Fig. 1 for a simple
example of a cost-benefit curve.

From such an analysis the decision makers could expect answers to ques-
tions like:
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Fig. 1. A simple cost-benefit-curve, where benefit is measured by the waiting time
in the network.

e What is the (maximal) benefit passengers can derive from any given
amount of investment? How can it be obtained, i.e. what are the detailed
investment decisions? Here, the 'benefit’ is the reduction of waiting time,
other choices are discussed below.

e How much money would it cost to increase the quality (i.e. to reduce the
waiting time) by a certain percentage ?

e What is the return of investment (measured in terms of benefit), i.e. how
much additional benefit could be obtained from increasing the investment
over a certain level (see e.g. levels ¢; and ¢y in Fig. 1) ?

Generally, the benefit for the passengers is the quality improvement of the
time-table : for example, higher speed of the trains shortens the travel times
and also gives room to design time-tables with better connections and shorter
waiting times. The link between investment and passengers is provided by
the time-table which therefore will be the main ingredient of our analysis.

The necessary investment as well as the benefit for the passengers can
be formulated as properties (more formally: cost functions) of a time-table.
Finding optimal time-tables with respect to these multiple targets then yields
a cost-benefit-analysis as is shown below. In addition, this result will also
give the planner all the information on how to allocate the investment in the
network and how to schedule the trains to obtain the maximal benefit.

It should be pointed out that we are only concerned with the strategic,
long-term planning problem in which operational details like safety headways
and capacity restrictions are not considered.

This research is performed in cooperation with the Nahverkehrsservice
Sachsen-Anhalt (NASA) GmbH. NASA is a provider of regional rail traffic
in the state of Sachsen-Anhalt in Germany. A prototype system for the opti-
mization and the evaluation of the results has been developed and is presently
tested on the network of NASA as explained below.
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2 A Mathematical Model of Time-Table Optimization

2.1 The Time-Table

We consider a network with fixed lines £ = {L;.. Ly} that are served
periodically each with a fixed period 77,,. A line is represented by the list of
consecutive stations the train passes through. Reverse directions are modeled
as separate lines. We assume that lines are strictly periodical. That means
e.g. that if some stations are skipped on a line during weak traffic hours, this
has to be modeled as a separate line with a possibly large period.

Let 6 = {Si,---,Sk} denote the set of all stations of the network
and 3 the set of all sections of tracks, i.e. stretches of tracks between two
neighbouring stations S,S’. Note that there may be more than one such
section between two stations, in particular, if two lines have different speed
on the same physical track, we model this by different sections. Let (S, S’, L)
denote the section from 3 that line L uses to travel from station S to its next
station S'. To each section, there is a list of potential improvements with their
costs and their effect on the running time of all lines on that section. When
investing into that section one has to choose among these improvements.

Let

D ={(L,S)| LekL,S e 6;L departs from S}

be the set of possible departures. Then a time-table T consists of two lists:
T=(((L,9](LS)eD), ((x)]z€3))

where 7(L, S) € {0,1,--- ,7, —1} is the departure time (modulo the period
7r) of line L in station S and §(z) is the running time scheduled for all
trains on section z € 3. From this the scheduled arrival time

v(L,S") == (L, S) +6((S,5', L))

of L in S’ can be calculated. Incorporating the running times instead of the
arrival times into the time-table is more convenient for our purpose.

As was mentioned above, we only consider a strategic planning situation,
in which the details of the network like capacities of sections or stations
and safety constraints (headways) are not taken into account. This greatly
simplifies the problem of finding a (mathematically) feasible time-table. In
fact, any list (p(L, S) | (L,S) € @) of integers can be interpreted as a list of
departure times simply by reducing them modulo the appropriate line period:
w(L,S) :=p(L,S) mod 7r,. We assume that for the running times 6(z) there
is a lower bound §(z) that could be achieved if all improvements on that
section were realized, and an upper value §(2), e.g. the running time of the
present time-table. Then the set of feasible time-tables is given as

Ti= X {07} x X (3(), -, 8(2)}-

T (L,8)eD



4 Michael Kolonko et al.

Any T € ¥ represents a valid time-table within our framework. Note that all
times are treated as integers, interpreted e.g. as 0.1 minute.

2.2 Cost Function I : Investment

Each feasible time-table T' € ¥ requires a certain running time on each section
z € 3. To calculate the amount of investment necessary to enable that running
time one has to be given the local cost functions

Cz {é(Z), 73(’2)} —IN

for each z € 3. ¢,(d) gives the minimal amount of money needed to enable
the running time § on section z, see Fig. 2 for an example of such a local
cost function. As mentioned above there is a list of possible improvements on
section z e.g. building a new level crossing, modernizing a switch or rebuilding
the whole track. The local cost function is built from these data by calculating
the cost and the reduction in running time for all possible combinations of
improvements. In particular the system checks all possible combinations for
the cheapest way to achieve a certain reduction in running time. In Fig. 2, a
running time § would require to install a new crossing and a new switch at
the (cumulative) cost of ¢,(d) = ¢ +¢.

investment
new track c’
new crossing c
+ new switch
new c —
crossing . .
0+ T B = running time

T -
32 5 3(2

Fig. 2. A simple local cost function c, (-)

From these local cost functions we may calculate the total amount of
investment required by time-table T" as

C(T) = c:(6(2)).
zZ€3

Note that now the investment is just a cost function value, i.e. a property
of the time-table.
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2.3 Cost Function II : Waiting Time

When changing from line L to line L' at station S the waiting time in a
periodic network can be given by

w(L,L',S) :=n(L',S) — (v(L,S) + «(L, L', S)) mod ged (1, 711)-

Here, v(L,S) is the arrival time of line L at station S as defined above
in Sec. 2.1. For L # L', a(L,L',S) denotes the minimal transfer time at
station S from line L to L'. Then (y(L,S) + a(L,S)) denotes the earliest
possible time at which a passenger changing from line L to line L' can reach
the train of line L' and w(L',S) is his or her actual departure time. For
L =1 aL,L,S) denotes the minimal stopping time of line L in station
S. Therefore, w(L, L, S) gives the amount by which the actual stopping time
of line L exceeds its minimal stopping time in station S. This is the waiting
time of passengers continuing their journey on line L at station S.

It is known from the literature that for any connection in a periodic
network the smallest, the largest and the average waiting time occurring
during a day differ only by constants from w(L, L', S), see Nachtigall (1996)
and the references given there. As these constants do not depend on the time-
table, minimizing w(L, L', S) is equivalent to minimizing any of the above
target functions. The total weighted waiting time is now given by

W(T):=> >  wlIL,S) g(LL,S).

Se6G L,L'eg

Here g(L,L',S) denotes a weight, e.g. the average number of passengers
changing from line L to line L' at station S. g(L,L’,S) will be 0 if there
is no reasonable connection from L to L' at S, e.g. if L’ is the reverse line
of L.For L=L', g(L,L' S) denotes the number of passengers who continue
their journey on line L as described above. There is an additional penalty fac-
tor for L # L' to give waiting on the platform a heavier weight than waiting
in the train during stops.

The weights g(L, L', S) can be entered into our system if such numbers
are available e.g. from traffic counts. If such information is not available it
can be estimated by our system: if there is an OD—matrix M = (m(o,d))
available giving the number of passengers m(o, d) that travel from origin o to
destination d then our system can calculate weights by sending the m(o, d)
passengers along shortest routes through the network. If even less data are
available, then we can estimate the OD—matrix using Lill’s law, see Section
6.2 below.

In some situations it is important to consider additional waiting times
like waiting for connections to other networks or waiting when entering the
system at particular stations at given time points (schools, large factories).
To include this kind of service into our system (e.g. arriving at 8 am at the
school station) we model the corresponding events as artificial lines with fixed
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arrival and/or departure times. Minimizing the total waiting time W (T') will
then lead to small waiting times for the connections to these artificial lines
(e.g. the train will arrive shortly before 8 am at the school station).

Note that we do not take into account waiting times that occur when
entering the railway system from outside at some random point of time. These
waiting times only depend on the periods of the lines which are considered
to be fixed in our context.

2.4 Multi-Criteria Optimization

The two cost functions, investment C(T') and waiting time W(T'), reflect
the quality of a time-table from different viewpoints: the traffic provider will
be interested in low investments whereas the passengers will insist on short
travel times and on short waiting times as the most unpleasant part of the
journey.

Further aspects of time-table quality may be considered by using addi-
tional cost functions like the total weighted travel time:

R(T) = Z T(07 d) ) g(07 d)a

0,dES

where r(0,d) is the minimal scheduled travel time for a route from origin o
to destination d and g(o,d) is the weight for the importance of that route.
We are also considering

U(T) := no. of vehicles necessary to run T

which can be calculated from a particular periodic scheduling problem by
linear optimization (see e.g. Orlin (1982), Serafini and Ukovich (1989)). An-
other cost function taking into account the delays will be discussed in the
next section.

Thus we are faced with an optimization problem where each time-table
T € ¥ has a multi-dimensional vector of cost function values e.g.

(e, w(x), R(T),U(T)).

The aim is to find good time-tables under this multidimensional criterion.
Obviously, these cost functions are not independent of each other.

Fig. 3 shows a simple example. There are four lines starting at the oval
stations. The rectangles indicate stations where lines can be changed, we as-
sume that the stopping and transfer times are 0. The numbers on the sections
denote their running times. The trains are assumed to run every 60 minutes.
The schedule is determined by the departure times in the starting stations
which are chosen such that there are no waiting times at the first chang-
ing stations. This necessarily leads to a conflict at the last, fourth station.
Whatever departure times we prescribe at the starting stations, the waiting
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Fig. 3. A simple network with four lines

time in the system will be 5 min resp. 55 min as the running times in the
directed cycle of the changing stations sum to 5 = 40+435—45—25. Only an
investment that will shorten these running times e.g. from 40 to 35 minutes
will reduce the waiting time (to 0 in this case).

In general one cannot expect that there is a single time-table minimizing
all criteria simultaneously. Instead, one is looking for the so-called Pareto-
optimal or undominated solutions. A time-table T' is dominated by 7" if
(for the cost values considered above)

c(IT')y <cC(T) , R(T

< < R(T)
W(T')<W(T) and UT)<U

(1),

and at least one of the ”<” is a ”<”. In this situation 7" is better than T and
T should not be used. In Fig. 4 the shaded area indicates the cost values of
all time-tables for two cost functions. The time-table belonging to the black

dot dominates all time-tables in the hatched quadrant. The bold line marks
the Pareto-optimal solutions.

investmentA %

|
|
i » waiting time

Fig. 4. Pareto-optimal solutions for two cost functions
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The cost function values of the Pareto-optimal time-tables constitute a
cost-benefit curve (or surface in case of more than two criteria). Each point
(c,w) on the curve in Fig. 4 gives the maximal benefit w achievable by an
investment c¢ resp. the least investment one has to make to obtain benefit w.
From the time-table T that is represented by the point (¢, w) = (C(T), W (T))
we can also determine how the total investment

¢ = CT) = Y e.(62)

z€3

should be allocated to the different sections z € 3 and how the ’benefit’, i.e.
the waiting time W (T'), spreads over the stations of the network.

An algorithm for the approximate solution of this multi-criteria optimiza-
tion problem is presented below in Section 5.

3 Stability of Time-Tables Under Delays

3.1 Scheduled vs. actual Times

A particular focus of our research is on the stability of time-tables. If we
optimize time-tables only with respect to their scheduled travel or waiting
time, we shall end up with time-tables that are highly synchronized but
have only small time buffers at stations. These time-tables may turn out
to be very instable in real operation as small delays seem to be inevitable
in complex networks. But then, the resulting real travel and waiting times
may be much larger than the scheduled ones due to missed connections. It is
therefore important to take small delays into account when designing time-
tables (whereas untypically large delays caused e.g. by accidents shall not
be considered here). We can incorporate this aspect into our approach by
defining a suitable cost function, e.g.

M(T) = mean travel time under delays.

Minimizing M(T) or minimizing the scheduled travel time R(T") and the
difference M (T') — R(T') would result in time-tables that have the additional
quality of ’stability’. It could also be of interest to examine the wvariation
of travel times that occur during a day. Typically, one would expect that
large waiting time (= large time buffers) correlates with high stability. Then
a cost-benefit-analysis including M (T") would show how much stability can
be gained e.g. by investing or by increasing the waiting time, see Goverde
(1999) for a result on time buffers for a single isolated connection. Another
target would be to examine the effect different ’waiting rules’ (stating how
long a train has to wait for its delayed feeder train) have on the delays and
the waiting times.

To be able to calculate M (T') one has to model the typical small opera-
tional delays on lines and at stations, their propagation through the network
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by the waiting rules and their absorption by time buffers. More precisely, one
has to know the joint probability distribution of the delays in the whole net-
work at every point in time. This is an extremely complex stochastic process
which at present cannot be handled analytically.

Therefore, simulation of the mean delays seems to be the only way, see
e.g. Suhl and Mellouli (1998) for a slightly different context. In our system
however, the delays are a cost function which has to be evaluated over and
over again. Exact simulation of the complete network is too time-consuming
to be included into our system at present.

Instead, we are extending the analytical model of local delays on a section
to simple tree-like (sub)networks. We intend to derive a fast approximate
macroscopic simulation of the whole network using analytical representations
of its subnets. In this program we have achieved a major step by exploring
analogies between the accumulation of delays on a single section and the
operation of a queuing system which is explained in the next Subsection.

3.2 Modeling Delays in Simple Nets

We start with a simple model of external disturbances and possible reactions
to it. We assume that along lines, perturbations occur randomly at places
0;,1 = 1,2,... and cause a sudden stop of length Z;,7 = 1,2,.... As long
as the train is in time, it travels at the scheduled speed of say a km/h. As
soon as it is delayed, the driver turns to the maximal speed b at which he
drives until the train is in time again or arrives at the next station. We
neglect all braking or acceleration processes. See Fig. 5 for a possible place-
time-diagram between stations S and S’. Here, perturbations occur at places
01,032, O3 causing delays of random amounts Z;, Z5, Z3. If delayed, the train
runs at increased speed b, indicated by bold lines. ¢ indicates the scheduled
arrival time at S’, & is the arrival delay.

place
s

03),

time

0 5" Tote

Fig. 5. A typical place-time diagram with random disturbances
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¢ :=1/a— 1/b denotes the possible rate of delay reduction, i.e. ¢ - s are
the minutes of delay that can be made up for on a section of length s km.
Hence the accumulation of delay along a section may look like Fig. 6.

accumulated
delay

I T 1 T > place
S o Q, (O} S

Fig. 6. The delays accumulated on a trip as in Fig. 5

There is a strong analogy to queueing theory in which customers arrive at
random points of time and require a random amount of service time from the
server. Here the total load of service time D; lying ahead of the server at time
t (the so-called virtual waiting time) has the same profile as the accumulated
delay. In fact the train can be viewed as a server that serves (reduces) all
requests (perturbations) with a service rate corresponding to c¢. Therefore
results on viritual waiting time can be used to derive the distribution of the
delay accumulated on a section.

We assume that the places (O;);>1 at which the perturbations occur form
a Poisson process with rate A, that the amounts (Z;);>1 of delay they cause
are i.i.d., exponentially distributed with parameter y and that both processes
are independent. Then the accumulated delay Dg: acquired along a section
from S to S’ approximately has the distribution

b < l—ﬁ ift=0;
(Ds <) = A (] —etu=Mo)  if >0

cp

Note that 1 — A/cu is the probability of arriving in time and 1 — e~t(#=2/¢)
is the conditional distribution of the delay given the train is delayed. A sim-
ilar result holds under more general assumptions on the (O;)-process, see
Engelhardt-Funke and Kolonko (2000) for details.

Moreover, if the train leaves station S with a departure delay of random
amount Bg then this delay can be reduced at rate ¢ during the ’idle time’ of
the server which has approximate duration of s(1 — ﬁ) if s is the length of
the section. Hence the arrival delay at the next station will be approximately

A
Dg + [BS - sc(l - @)]4_

Assuming that all perturbations are independent, this scheme can be it-
erated to give the delay distributions along a line. The analytically derived
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distributions have the same structure as those extracted from empirical delay
data (see e.g. Mithlhans (1990) and Herrmann (1996)).

We can use this approach also to derive the propagated delays on con-
necting trains with delayed feeders at least in simple tree-like net structures,
see also Weigand (1981).

Note that in more complex structures containing (undirected) circles, de-
lays of consecutive trains may no longer be independent due to feedback ef-
fects. Another problem arises from the dependencies caused by the circulation
of (delayed) vehicles. These problems are at present beyond our analytical
model and remain to be simulated in a future version of our system.

4 The Reduced Internal Network

For an efficient solution of the multidimensional optimization problem sketched
in Section 2.4 above, in particular when calculating the waiting times, we
have to reduce the network to the data relevant for that calculation (see also
Nachtigall and Voget (1997)).

We restrict ourselves to transfer stations & in which passengers can
change between different lines and determine all change-or-stop-relations
(L, L' S) : ’change’ for L # L'and ’stop’ for L = L'. We also aggregate the
sections connecting two transfer stations into a segment 2. Note that there
may be more than one segment between two transfer stations if there are
different routes or if the trains have different speeds and different minimal
stopping times on their way. The corresponding local cost functions c,(-)
are then added into one cost function é;(-) for the segment. This operation
requires some care as only favourable combinations of improvements for the
aggregated sections should be used. é;(d) then gives the minimal costs to
achieve a running time of § on 2. .

The corresponding reduced time-tables T' only contain departure times
#(L,S) for S € & and running times §(2) for segments . Again, the resulting
set of feasible time-tables € has a very simple structure.

Note that the effort for reduction has to be spent only once at the be-
ginning of the optimization. Internally, the reduced network is a stored as
an activity-on-arc-network, with the change-or-stop-relations as activity arcs
and the segments Z with their cost functions as vertices.

After the optimization the reduced time-tables and cost functions have
to be ’inflated’ again. In particular, the aggregated investments have to be
decoded carefully to yield the costs and actions on the original sections.

5 A Solution with an Evolutionary Algorithm

In Nachtigall (1998) it is shown that the solution of the one-dimensional wait-
ing time problem with fixed running times is a very complex periodic opti-
mization problem, see also Nachtigall (1996) and Zimmermann and Lindner
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Fig. 7. A production-reduction cycle of the evolutionary algorithm

(2000). Here, we added more cost functions and increased the dimension of
the solution space (by introducing the running times) so that the problem
becomes far too complex for the methods of exact mathematical optimiza-
tion. In particular, if we include cost functions like M (T') that can only be
simulated, exact methods are excluded.

In our prototype implementation we have successfully applied an evo-
lutionary algorithm for the approximate solution of the multi-dimensional
optimization problem. The algorithm is based on a population of time-tables
that are chosen randomly at the beginning, see Fig. 7. The population is
then enlarged by producing ’offspring’ using genetic operators like crossover
and mutation. This is indicated by the left arrow in Fig. 7. For the crossover
two time-tables are chosen at random from the present population. The two
lists of the time-tables are then crossed either with standard operations like
one-point or uniform crossover or by more sophisticated methods taking into
account the regional structure of the time-table. The resulting time-table is
mutated by randomly changing departure and/or runnning times. To make
sure that the mutated time-table is still feasible the running times on each
section z must be restricted to their respective ranges [0(2),d(2)] (see 2.1).
The departure times are easy to handle as they are given as offsets to their
line periods. Any result of a random mutation may therefore be interpreted as
a departure time, possibly after modulo reduction. So the results of crossover
and mutation are time-tables from ¥ again.

These crude stochastic operations are complemented by local search heuris-
tics that may be used to improve the result of the crossover and mutation.
Here, the running times on all segments of tracks are increased (within their
limits) until the waiting time of the time-table becomes (locally) minimal.
An alternative heuristic varies the departure times at all stations so that the
waiting time at this station becomes locally minimal. As for these heuristics
all segments resp. all departures have to examined, these improvements are
very time-consuming compared to the genetic operators.
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Invoking crossover, mutation and possibly local improvement repeatedly,
a number of offspring time-tables is produced enlarging the present popula-
tion. This enlarged population will be reduced to its original size by selecting
the ’fittest’ time-tables, see the step ’reduction ’ in Fig. 7. There are dif-
ferent ways to take care of the multidimensional cost function during the
reduction, see Ishibuchi and Murata (1996). Particulary successful is a selec-
tion procedure that adapts the type of reduction to be used to the present
state of the population, see Kolonko and Voget (1998) for details on this.
The reproduction-reduction cycle is repeated for a number of generations.
Typically the population of time tables tends to improve quite fast (see Fig.
8).

The evolution of the population can be visualized on the screen, see Fig. 8
for a screenshot. The cost function values of the individuals (time-tables) of
each population form a cloud in the space spanned by the cost functions. Its
lower envelope are the present Pareto-best solutions. They form an approxi-
mation to the Pareto-optimal set and the cost-benefit-curve. The visualization
can also be used to examine the impact of the different parameter settings of
the algorithm.

6 Practical Results with the NASA Network

Our prototype implementation is presently applied to the network of the
NASA GmbH in the state of Sachsen-Anhalt, Germany. This network consists
of 467 stations and 295 lines ( in the sense of our model, see Section 2.1
above). The lines are formed of 551 different sections z and NASA decided
that 190 of them could be modernized. The rest of 361 sections already have
been renewed or are considered to be of less importance. After reducing the
network as described in Sec. 4 there are 1010 different departure pairs (L, .S)
describing that line L departs from station S. We have 3910 change-or-stop-
relations (L, L', S), so there are 3910 reasonable possibilities for passengers
to change from line L to line L' in station S or — in case L = L' — to stay in
the train of line L during its stop at station S.

The two cost functions of interest to our partners fom NASA are the
necessary investment C(T') and the passenger waiting time W (T). Since not
all necessary data were available we agreed with our partners to estimate the
missing data to get a first analysis on a strategic planning level.

6.1 Local Cost Functions

On each of the 190 sections open for renovation there is only one type of
general reconstruction possible that enables the train to run at an increased
speed. Hence the local cost function (see Section 2.2) attains only two values
because no combinations of different improvements are available. As data
we were given the present maximal speed and the maximal speed after a
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renovation of the section. We assumed that the actual average speed would
increase with the same proportion. We then calculated the amount of running
time that could be saved on each section from its length, its present running
time and the possible increase in average speed.

Our system can cope with quite general cost functions for the improve-
ments on the sections. However, the exact price for such an improvement is
not known yet. So NASA suggested to use a linear cost estimator, meaning
that reconstructing one km of the track costs one unit of money. Of course
this is only a rough estimator but it was considered adequate for now by our
partners. From the estimated data the investment costs C(T') are calculated
as described above.

Note that in this situation C(T') is proportional to the minimal length of
tracks that have to be renewed to enable time-table T, with the restriction,
that only complete sections can be reconstructed.

6.2 Waiting Time

There were no data on the number of passengers changing at stations and
no OD—matrix available. Therefore we used an estimation for the weights
g(L, L', S), used in the expression W (T') for the waiting time (see 2.3). This
estimator is based on the so-called Lill’s law. There are five categories of
cities. To each station S its category Cat(S) is assigned that characterizes its
size and economical importance. The average number m/(S, S’) of passengers
travelling from S to S’ is then estimated by

_ Cat(8) - Cat(8')

! _— .
m(S;5') = distance(S, S")2

const

where distance (S,S5’) is the length of a shortest path from S to S’ in the
network. Here, ’shortest’ refers to the running times on the tracks from the
present time-table (without any investment). The m(S, S’) are then collected
into an OD-matrix M.

To obtain the weights g(L, L', S) for each change-or-stop-relation (L, L', S)
it is counted how many passengers will pass through that relation while fol-
lowing their shortest connection from S to S’ as described above. For sim-
plification, we do not take into account a possible split of passenger streams
if there are several shortest paths. Also, we neglect a possible feedback ef-
fect of time-tables on the routes passengers choose. The weights calculated in
this way present a kind of public pressure on the respective change-or-stop-
relations. Time-tables should respect them as they also reflect the goal to
drive passengers through the network on shortest routes for economical and
ecological reasons.
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Fig. 8. The evolution of the time-tables

6.3 Optimization and Results

We included the actual NASA time-table (or rather a strictly periodic version
of it) into our starting population. The cost function values of a typical start-
ing population are shown in the screen-shots in Fig. 8. In the left picture, the
random solutions of the starting population form a cloud in the upper right
corner, the present NASA time-table (with investment 0) is included. Nat-
urally, it dominates all random starting solutions. During the optimization
the cloud moves towards the lower left corner as the quality of the solu-
tions increases (less costs and less waiting time). The NASA time-table is the
only Pareto-optimal solution for a number of generations but it is typically
reached by other solutions as shown in the right picture of Fig. 8 after just a
few seconds. Here, the dark grey dots represent the present population. For-
mer solutions that have not ’survived’ are drawn as light grey dots, whereas
the black dots indicate the new Pareto-best solutions, which require some
investment but have less waiting time than the NASA time-table.

Note that the waiting time on the z—axis has the unit ’passengers x min-
utes’ and includes the penalty factor for waiting on the platform as mentioned
in Sec. 2.3. It attains very high values which have no direct practical mean-
ing. They are only used as a relative measure of the quality of time-tables
when compared with the present one.

The diagram in Fig. 9 shows the Pareto-best solutions found in several
runs with different parameter settings including local improvement operators.
The scale of the axis has been adjusted to give a better overview; for compar-
ison with Fig. 8, a screenshot has been added showing the same cost-benefit
curve with the scaling as used in Fig. 8. The NASA time-table has been in-
cluded for illustration though it is dominated by other time-tables. It is shown
at the lower right corner of the diagram and has waiting time 94334724 units
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Fig. 9. The lower envelope of the cloud approximates the cost-benefit curve

(and 0 investment). The best solution at 0 investment that our system has
found (by adjusting the departure times) has waiting time 89362695, which is
an improvement of 5.2 %. Fig. 9 also shows that investments between 100 and
500 units are particularly efficient as the waiting time decreases drastically
in this region. On the contrary, investments of more than 900 units seem not
very efficient.

One should note however, that a direct comparison between the actual
time-table of NASA and our Pareto-best results is difficult, as in contrast to
the NASA time-table we do not take into account operational constraints as
was mentioned above. Moreover, we had to rectify’ the NASA time-table at
some points to make it strictly periodic.

As the algorithm is highly stochastic, each run gives a different picture.
The results of Fig. 8 were obtained within 30 sec on a medium sized Pen-
tium PC. With runs of about 5 minutes we are able to find time-tables that
dominate the present NASA time-table, i.e. they have less waiting time with-
out any investment. The results in Figure 9 were obtained from several runs
taking a total of about 5 h.

The result as shown in Fig. 9 represents an approximation of the Pareto-
optimal solutions. It can be examined in detail using our interactive cost-
benefit-analyser. Here, the cost-benefit curve is displayed in a diagram similar
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Fig. 10. The interactive cost-benefit-analyzer explains the results of the optimiza-
tion

to Fig. 9. The map of the network is displayed in a separate window as in
Fig. 10. If a point (i.e. a time-table) in the diagram is activated by a mouse-
click, the allocation of the investment it requires is displayed on the map by
marking the corresponding sections red. In addition, there is a pop-up list
of the improvements selected for each section. In a similar fashion it can be
shown how the benefit of the time-table, i.e. the reduction of waiting time
spreads over the stations of the network. Of course, the time-table and the
allocation of investments can be output as text.

7 Future work

Our future work will focus on three points: First, we want to integrate the
macroscopic simulation of delays into the optimization to be able to measure
the robustness of a time-table under random delays. Secondly, the optimiza-
tion will be improved incorporating additional local search heuristics like
simulated annealing to complement the global search aspect of genetic algo-
rithms. Using simulated annealing in a multidimensional cost environment
is a particularly challenging task. Finally, we are investigating how capacity
and safety contraints could be integrated into our model. As the present im-
plementation works very fast with a network as that of NASA, we are quite
optimistic about the chance to include these aspects into our system.
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