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Simulated particle packings deliver insight into many properties of granular
matter. As many granular mixtures comprise a broad range of particle sizes,
a large number of particles has to be included in the sample to reproduce
the correct size proportions within the simulation. This is a great challenge
not only for the simulation setup, but also for the internal data structures
used to keep track of the particles’ positions. This paper discusses grid and
octree as examples of established spatial indexing techniques and identifies
their difficulties with high polydispersity. A comparison shows that the lesser
known loose octree is able to overcome these problems as it combines quick
particle insertion with a good partitioning scheme.

1 Introduction

Simulating granular media is of great importance in many different fields of material
science. It is applied e. g. in pharmaceutics, in powder metallurgy, concrete research or
general material design. Often, the aim of the simulation is to obtain a random dense
particle packing from a given grain size distribution. Such a packing may be used to
analyse the space filling of the grains, the microscopic configuration under compaction
or it serves as a starting configuration for the simulation of flow or stress behaviour.

In this paper we are going to discuss some data structure that allows an efficient
simulation of particle packings on a computer. To derive the requirements for such a
structure, we first have to look at the different algorithms for packing a given sample of
particles into a container.

With the discrete element method (DEM) [1] a package can be simulated in the most
realistic way keeping track of forces, frictions, accelerations and velocities between the
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particles during the creation of the package. The computational effort limits this ap-
proach to packages with a relatively small number of particles (a few thousand on today’s
computers). This is sufficient for homogeneous particle mixtures where particles vary
only little in size and other relevant properties.

If however, particles in a mixture differ very much from each other, the packing must
contain a possibly huge number of particles in order to allow a representative analysis
of the mixture. E. g., in a typical concrete mixture particle sizes vary from less than
0.1 µm up to 200 µm with even larger particles up to 32 mm if aggregates like gravel or
sand are added. Representative samples from such mixtures are much larger than can
be handled by today’s simulation tools. In [14] a hierarchical approach is presented that
subdivides the size range of the sample and allows to restrict the simulation to smaller
subsamples. Still, the problem remains to simulate packings that contain several million
particles.

Usually, the problem is simplified by 1.) replacing the particles by spheres and 2.) ne-
glecting any property or interaction of the particles other than their geometry. Then
the problem is to simulate a random close packing of (non-overlapping) spheres with
diameters sampled from a given size distribution.

Algorithms for this problem mostly belong to two categories: the random sequential
addition (RSA) or the collective rearrangement (CR) type.

RSA algorithms [2, 3, 4, 5] add spheres to the packing one by one. The final position
of a sphere is found by dropping it onto the packing and rolling it until a stable position
is reached [2], or by randomly testing different positions for the sphere and choosing the
best one, e. g. the one with lowest potential energy [3]. The packing can either be built
upwards from the bottom of a container to its top (see e. g. [5]), or grown as a cluster
by adding spheres from all directions [4] or along a spiral on the outer boundaries of the
container [6]. RSA algorithms are generally faster than the CR type algorithms described
below, but are reported to create packings with a lower density [11]. Therefore, we are
going to restrict ourselves to CR algorithms in the sequel.

CR algorithms are iterative algorithms that start with a random initial placement
of all spheres in the container. The spheres are allowed to overlap, this may even be
enforced by choosing a container that is too small for the spheres. In the following
iterations, the spheres are visited sequentially and each one is moved by a small amount
such that the overlap with its neighbours is reduced. In this way, the average overlap is
reduced as far as possible and remaining overlaps are balanced throughout the packing.
From time to time, the container to sphere size ratio is increased, either by growing the
container (see e. g. [10]) or by shrinking the spheres (see e.g [11]). This allows to reduce
the average overlap until a valid (i. e. more or less overlap-free) packing is obtained.

Data structures suited for CR algorithms are therefore faced with the following re-
quirements:

Insertion insertion of a large number of sphere locations during initial placement,

Polydispersity the diameters of the spheres may vary across several orders of magnitude,
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Relocation the spheres are constantly relocated though the changes are typically very
small,

Contact search there must be an easy access to all neighbouring spheres that might
overlap a given sphere.

The most time-consuming step in CR algorithms (as well as many other types of algo-
rithms) is the identification of possibly overlapping neighbours of a sphere in a changing
environment. Therefore, property Contact search is the most important requirement
for the data structure.

Many sophisticated spatial partitioning and indexing techniques have been developed,
see e. g. [15] for a recent comparison of some of them. It seems that most of these data
structures and contact serach algorithms are optimized for objects that are of about
equal size (e. g. [16]) or (like the dynamical grid structure of [23]) they work well only
for systems in which the neighbourhood structure is updated simultaneously for all
spheres at once per iteration. This is the case e. g. if an iteration models a time step
in a DEM simulation [15]. In CR packing simulations we need a valid neighbourhood
information after each relocation of a single sphere.

In this paper, we report some observations made in our experiments with different
data structures without attempting to give an exhaustive overview here. In particular,
we want to draw attention to the so-called loose octrees, which seem to be well suited for
the CR simulation of polydispers particle mixtures. In our experiments, a hybrid data
structure performed best with respect to run time. It consists of a loose octree for the
global location information of all spheres and a local neighbourhood list for the contact
search of each sphere. We compare these to grid-type structures and the rigid octree.

Let us state the packing problem more formally now. Assume that there are N spheres
with diameters ranging from dmin to dmax that are to be packed into a cubic container
with side length s0. The aim is to obtain a random dense packing of the spheres, but
during the CR algorithm spheres may overlap. Typically, the starting volume of the
container will be much smaller than the final packing volume, it may even be as low as
the net volume of the spheres.

In the next section we start with the local neighbourhood structure, the so-called
Verlet lists. We then discuss different grid and tree structures in Section 3, in particular
we describe the loose octree. In Section 5, a comparison of the performance of the
different data structures for monodisperse and polydisperse packings is presented.

2 Local neighbour search with Verlet-lists

As mentioned in the introduction, a CR iteration sequentially visits each sphere and
relocates it. Let us call the sphere presently visited the active sphere and name it σ.
The algorithm checks the neighbours of σ for possible overlaps and then σ is moved
away from its neighbours to reduce the overlap. If σ has no overlap, it is moved towards
its nearest neighbour as the aim is a dense packing.
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In our hybrid data structure we use local neighbour lists to perform the search for
potential overlaps more efficiently. These lists serve as local data caches that have to
be updated only if one of its members has been moved over a larger distance. In CR
iterations movements are typically very small so that updates do not occur too often.
Such neighbourhood lists were introduced in [28] (see also [29]) and are therefore also
called Verlet lists. Although they can also be used alone (an example can be seen in
the work of Nolan and Kavanagh [9]), they are widely accompanied by a global spatial
index, e. g. a grid structure [30, 31, 32].

The Verlet list of a sphere σ contains all spheres that are located within a Verlet
distance δV from σ. More precisely, let the center of σ be at the position cσ and let rσ

denote the radius of σ. Then the Verlet list LV (σ) contains all spheres that intersect
the Verlet sphere V (σ) of radius rσ + δv centered at cσ, see Fig. 1a). The Verlet lists are
created after the initial placement. LV (σ) also contains the location cσ of (the center
of) σ at the time the list was created or last updated.

δV

a)

σ

b)

δV /2

δV /2

Figure 1: a) The black sphere in the center is the active sphere σ, the large gray sphere is in
the Verlet list LV (σ) as it intersects the δV -zone around σ. The small light gray one
is not in LV (σ). b) Although the spheres have moved, there is no need to update
the neighbour list LV (σ) yet because the spheres’ new positions differ less than δV

2
from their initial positions.

An update of LV (σ) has to be carried out only if the total displacement of σ from its
former location cσ is more than δV /2, see Figure 1b). For an update, the neighbours
within distance δV from the new location of σ have to be found in the global data
structure discussed below. If members from the old list are no longer neighbours of σ,
then σ has to be deleted from their Verlet list, too, and if new neighbours appear in the
updated list then σ must be appended to their Verlet lists to maintain the symmetry of
the neighbourhood relation. This update rule guarantees that all possibly overlapping
spheres of σ are in the present Verlet list of σ.

The gain in performance from using Verlet lists obviously depends on the size of
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δV : if it is chosen too small compared to the sphere movements, the lists have to be
updated very often, if it is large the lists contain more neighbours which have to be
checked for overlap (the number of neighbours increases with δ3

V ). We cannot give an
optimal value because it depends on the sphere movements, size distribution and initial
overlaps. However, we recommend to slowly decrease δV during a CR simulation run as
the movements of the spheres become smaller while the structure approaches the final
packing.

3 Spatial data structures for the global positioning of
polydisperse objects

Beside the local neighbourhood lists we need a global data structure that contains the
spheres with their present position within the container, i. e. the absolute coordinates of
their centers and their diameters. During the initial placement phase of CR, the spheres
are inserted into this data structure sequentially. Changes in the location of a sphere
during the overlap reduction phase must be recorded and the present neighbours of an
active sphere σ have to be found quickly for the update of the Verlet lists.

3.1 Grid

Probably the most natural approach would be a grid structure that divides the container
into cells of equal size. Each sphere σ is assigned to the cell ν(σ) that contains its center.
This idea was introduced to molecular dynamics by Alder and Wainwright [19]. [20]
accelerated the neighbour search by linking all objects in one cell into a ’linked-cell list’,
so that all objects in one cell could be accessed via the cell list. This became a standard
method in DEM (see e. g. [21]), but is sometimes also used in CR simulations [22].

To obtain a grid in our case, the cubic container with side length s0 is divided into m3

equal cubic cells with side length g := s0/m. Insertion of a sphere is particularly easy
as the cell ν(σ) can be determined from the coordinates of the sphere center in O(1),
independently of the number of spheres.

If g resp. m is chosen such that
dmax ≤ g, (1)

where dmax is the diameter of the largest sphere, then all spheres will fit into the cells.
More importantly, it is guaranteed that all neighbours that may overlap any sphere in
a cell c0 must be contained in one of the adjoining 26 cells (in 3-dimensional space), see
Fig. 2 for a 2D example.

This performs well as long as the average number of spheres per cell with side length
g ≈ dmax is small, which is the case for monodisperse systems or particles with only
small deviations in diameter.

For highly polydisperse media, the reqirement dmax ≤ g implies large cells, each
possibly containing a huge number of small spheres. Particle size distributions as they
are typical e. g. in concrete technology consist of many small and only a few very large
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Figure 2: A 2-dimensional grid. Only the nine coloured cells can contain neighbours that
overlap the dark sphere in the middle cell.

particles. Here, the grid may even degenerate into a single cell. Hence for polydisperse
particle mixtures, the number of potentially overlapping spheres in the adjoining cells
increases dramatically which makes a simple grid inefficient for this task. This is also the
case for some enhancements of the grid as e. g. the algorithm named ’no binary search’
from [16].

There are a number of workarounds for this situation. If there are only few very large
particles, one may keep them seperately e. g. in a list and use the grid only for the mass
of smaller and less polydisperse particles. This allows smaller cells and accelerates the
neighbour search, however it complicates the data structure and requires more effort
than the structures introduced below.

In an interesting approach in [23] the cell size may be chosen independently of the
sphere sizes. The reference point for a spheres is the origin of the smallest enclosing
cube (instead of their center) and it is assigned to the cell that contains this reference
point. The algorithm sweeps through the cells starting from the origin of the container
and going to the opposite corner. In each cell, all spheres with reference points in that
cell are checked for neighbours in the cell itself and the adjoining cells that have not yet
been visited. If one of these spheres also intersects another cell not yet visited, it will be
checked with that cell again, it ’migrates’ to that cell. In this way polydisperse mixtures
can be checked with a limited number of cells to be searched. However, this approach
is only useful if the neighbourhood of all spheres is checked as it must visit all cells in
a specified order to be efficient. For the update of Verlet lists as described in Section 2,
we only have to do local checks of some spheres.

An extension to the single grid data structure is the use of multiple grids of different
sizes [24] that contain the spheres of appropriate size. During the search they have to
switch between grids which makes the algorithm a little complicated if the mixture is
highly polydisperse and a lot of grids have to be used. Actually, this structure resembles
the hierarchical trees discussed next without having their simple recursive structure.

3.2 Octree

Search trees are widely used in computer graphics, geo information systems and similar
tasks. Binary search trees for DEM are discussed in [?] and [15]. More efficient for the
spatial indexing in three dimensions seem to be the so-called octrees [25, 26].
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Level 0 Level 1 Level 2

Figure 3: The first three levels of an octree.

Here, the (cubic) simulation domain (with side length s0) is divided into eight octants
with side length s1 := s0/2, called nodes on level 1. Each node is then recursively
subdivided into eight octants so that on level l ≥ 0, there are 8l nodes (cubic cells) with
side length sl := s0/2l, see Figure 3. Each sphere is assigned to the smallest node into
which it fits. If dmin denotes the smallest diameter of a sphere in our sample, then we
need an octree with lmax levels where

slmax ≥ dmin i. e.
s0

2lmax
≥ dmin or lmax =

⌊
log2

s0

dmin

⌋
. (2)

The single node at level l = 0 is called root node and contains the whole simulation
domain. An octree can be regarded as a hierarchical grid, at each level providing an
adequate grid size for a different class of sphere sizes.

Insertion of a sphere into this spatial index is done by traversing the tree: Beginning
with the root node it has to be checked whether the sphere fits completely into one of its
eight child nodes without intersecting another node. If this is true, the sphere descends
in the tree to the corresponding node where this procedure continues, otherwise it stays
in the present (parent) node. This way all spheres are placed as deep into the tree as
possible, this needs O(lmax) steps per sphere in the worst case.

Note that a lot of the nodes at the deepest tree level may remain empty if the associated
space is occupied by larger spheres which reside in nodes at higher levels. In a less
memory-consuming variant, the tree nodes are only built on demand, i. e. when a sphere
would fit into a node’s child, this child node is created and the sphere descends. Nodes
will also get deleted when their last sphere moves away and they contain no child nodes.
However, the dynamic memory allocation and freeing is slower than a static tree.

In contrast to grid cells, the octree nodes enclose their spheres completely, so none of
the adjacent nodes of the same tree level have to be searched for overlapping spheres.
All possibly overlapping neighbours of a given sphere σ in a node ν(σ) on level l reside
in a subset of the following nodes: the node ν(σ) itself, all of its parent nodes (from one
level l−1 up the root node) and of all of its child nodes on levels l+1, l+2, . . . , lmax, see
Figure 4. Thus the maximum number of nodes nν(l) whose spheres have to be included
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as neighbours for a sphere situated at level l is

nν(l) = l +
lmax−l∑

i=0

8i, l = 0, . . . , lmax. (3)

In particular, the spheres residing in the root node are always included as neighbours of
each sphere.

. . .

level 0

level 1

level l

level l + 1

level lmax

...

Figure 4: For the Verlet list of a sphere in the black node on level l, only the grey nodes
have to be searched.

It is possible to reduce the number of nodes to be searched if intersection checks
between σ and the nodes at levels l + 1, . . . , lmax are carried out. Whenever there is no
intersection between σ and a node ν∗, all further child nodes of ν∗ do not have to be
searched as they cannot overlap σ either.

A clear disadvantage of octrees is the following: when a sphere is assigned to a node,
the level of the node depends not only on the diameter of the sphere, but also on
its position. E. g. for a container centered at the origin, all spheres intersecting the
coordinate planes will be placed into the root node no matter how large they are because
they do not entirely fit into one of the child nodes. The same holds for all spheres that
intersect one of the dividing planes of deeper levels: they cannot be placed as deep into
the tree as their diameters allow because they would then intersect more than one node.
This results in a kind of ’hotspot’ pattern along the dividing planes made visible in
Fig. 5.

Though this weakens the overall performance of the octree during contact search, the
hierarchical approach of the octree suits polydisperse particles quite well as it contains
cells of different size. In the next Section we shall relax the requirement that a sphere
must fit exactly into one node and obtain a data structure tailored to our needs.

3.3 Loose Octree

The loose octree is an octree variant introduced by Ulrich [33] in order to overcome the
’hotspots’ of octrees described above. So far, its main field of application seems to be

1Picture generated with a modified version of QuteMol [27].
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Figure 5: Dense packing of 50 000 spheres1. Sphere colors indicate the octree node level:
the darker the color, the higher the level. The black spheres intersect the
splitting planes and thus reside in the root node.

computer graphics and in particular game programming. The strucure is slightly more
complicated than in an ordinary ’strict’ octree, but its advantages are more balanced
nodes and the possibility to calculate the target cell of a sphere directly without having
to traverse the tree.

boundary
inner

outer
boundary

c)b)a)

Figure 6: Sphere placement in a two-dimensional equivalent to octree and loose octree:
a) The sphere intersects the splitting planes of the octree and must remain on
the upper level. b) In the loose octree the sphere fits into the outer boundary,
and may therefor go into lower right child node. c) The outer boundaries of
the nodes overlap each other and nodes of other parents.

Different to ordinary octrees a node in the loose octree represents a larger part of
the container. A node is defined by an inner boundary of side length s(in) and an outer
boundary of length s(out). While s(in) corresponds to the node size s as in an ordinary
octrees, the outer length s(out) := k · s(in) causes the nodes at a given octree level to
overlap each other for a factor k > 1. Now each sphere is assigned to the deepest node
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that contains its center within the inner boundary while the sphere fits entirely into the
node’s outer boundary, see Fig. 6. This node expansion causes the spheres to be placed
much deeper into the tree as can bee seen in Fig. 7 when compared to the octree case
in Fig. 5.

Figure 7: The dense packing of 50 000 spheres2 from Fig. 5. The same color range is
used for the loose octree node level, hence spheres placed deeper into the tree
appear brighter.

An appropriately chosen node expansion factor k is of great importance. To avoid the
’hotspots’ along the splitting planes large values of k are preferrable. On the other hand,
large values of k cause large overlap between nodes of one level. This in turn leads to
longer Verlet lists of neighbours: the neighbourhood list LV (σ) of a sphere σ in a node
ν on level l contains the spheres of all nodes that have outer boundaries overlapping
the outer boundary of ν. Besides the predecessor and successor nodes as in the strict
octree these may include all sibling nodes of ν as well as nodes in other subtrees. These
nodes have to be determined by a traversal of the tree. Though this seems more effort
compared to the strict octree it is made up for by the fact that the average level of
spheres is much deeper in the loose octree than in the strict one. Therefore the larger
part of overlapping nodes are quite small containing less spheres, see alo experimental
results in Section 5.

As already stated by Ulrich [33], k = 2 is a value that performs very well. In particular,
it allows to insert a sphere into the tree without having to traverse it: a sphere σ of
diameter d necessarily fits into the nodes of level l with inner boundary length d ≤
s
(in)
l := s0/2l, hence the deepest such level is

l(d) :=
⌊
log2

s0

d

⌋
(4)

2Picture generated with a modified version of QuteMol [27].
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a) b)

Figure 8: a) With k = 2 a sphere with diameter d ≤ sin always fits inside the node’s
outer boundary. b) It may fit into one of its child nodes.

where s0 is again the side length of the whole simulation domain. Note that the sphere
σ can possibly be placed a level deeper into the tree if one of the children of ν entirely
contains σ within its outer boundary, see Fig. 8 b).

A complete insertion strategy for a sphere σ of diameter d would therefore be:

1. Calculate the node level l = l(d) with Eq. 3.

2. Choose the node ν on level l that contains the sphere’s center. Note that the inner
boundaries of the nodes on one level form a grid such that ν can be determined in
O(1).

3. Check the one child node of ν that contains the sphere’s center within its inner
boundary. If the sphere σ happens to fit completely into its outer boundary, store
σ there.

4. Else assign σ to ν.

Because of step 3., we need one more level in the loose octree than in the strict octree:

l̃max =

⌊
log2

s0

dmin

⌋
+ 1 (5)

Remember that the above steps are used not only during the initial insertion of the
spheres into the tree but also after each update of a sphere’s position during the rear-
rangement, which makes this fast insertion strategy much more valuable than the one in
the ’strict’ octree case. The additional effort in step 3. speeds up later neighbour search
as a sphere placed one level higher than necessary always adds to the neighbours of all
spheres in its node’s descendants.

To update the Verlet list LV (σ) of a sphere σ we simply check for intersection between
the virtual Verlet sphere V (σ) (as described in Section 2) and the nodes of the loose
octree, beginning with the root node. If a node is fully located inside V (σ), all spheres
of all further child nodes in this subtree have to be included. If, on the other hand,
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there is no intersection, then all of these child nodes can be skipped. Only at a partial
intersection the check has to be carried out for the child nodes, too.

The distribution of spheres among the tree levels will correspond to the particle size
distribution: spheres with diameters in the interval (s0/2l+1, s0/2l] reside in the loose
octree levels l or l + 1, so a size distribution typical e. g. for concrete would result in
heavily populated deeper levels and much fewer (larger) spheres on the upper levels.
This adapts well to the tree structure which provides more nodes in the deeper levels.

4 Comparison

To examine the performance of the different data structures, in particular of the variants
of the octree, samples of 10 000 spheres were packed by our collective rearrangement
algorithm.

The first experiments used a monodisperse packing with a sphere diameter of d = 1.
The second sphere mixture was sampled from a Fuller curve [35] which is defined by

pi =

(
di

dmax

)0.5

, i = 1, . . . ,m (6)

where the di are m different diameters with d1 < d2 < · · · < dm and pi is the share (by
mass or volume) of spheres with d ≤ di. The Fuller curve is a classical size distribution
that results in a high space filling of the packing. For the simulation the parameters
684.75 and m = 70 were chosen; however, in the sample of limited size (10 000 spheres)
only part of the distribution could be realized, so the diameters ranged from dmin = 1
to dmax = 52.7.

The histograms in Fig. 9 show how the spheres are distributed among the levels of the
strict octree and the loose variant. The results are averages from the trees for the final
packings. In the octree the spheres are widely distributed among the levels of the tree in
the monodispers as well as in the polydispers case. If a loose octree is used, the spheres
reside mainly within the last few levels of the loose octree. In the monodisperse packing
there are actually no spheres on levels 0–3 of the loose octree. As the spheres all have
diameter 1, they are inserted into the two deepest tree levels only. In the polydisperse
case, however, the outer boundary length s

(out)
7 of the nodes at level 7 was only slightly

larger than the smallest diameter dmin, hence only very few spheres slip into the deepest
loose octree node level 8 (cp. step 3. above).

As was noted above, octrees have a definite advantage over their loose counterpart:
Nodes of an ordinary octree cover exactly the same region as their descendants, while
loose octree nodes overlap their siblings of the same level, hence most space within each
level is covered by more than one node. This should increases the number of nodes
possibly intersecting a sphere σ and hence increase the length of the Verlet neighbour
list.

The following results show however, that the advantages of the loose octree prevail:
as most of the spheres are on deeper levels in the loose octree, the neighbourhood search
in the (small) overlapping nodes is much more precise resulting in shorter Verlet lists.
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Figure 9: Distribution of spheres among octree and loose octree levels in the final pack-
ings, averaged over 10 simulation runs.

Table 1 gives the average number of neighbours per sphere for both the monodisperse
and the polydisperse packing for all three global data structures considered in this paper:
grid, strict octree and loose octree. While the grid demonstrates its strength at monodis-
perse packings, it degenerates into a single cell for the polydisperse mixture since the cell
size is determined by the largest sphere (see Eq. ??). Both hierarchical tree structures
perform better in the polydisperse than in the monodisperse case, with about 40 % less
neighbours in the polydisperse case. Comparing the loose octree to the ordinary octree,
the latter delivers about 40 times more neighbours than its loose counterpart.

Considering the fact that the possible overlap with each of its neighbours has to be
calculated for every single sphere during each iteration step of the CR algorithm, the
loose octree is the only appropriate choice among these three spatial indexing techniques

method av. no. of neighbours

monodisperse polydisperse

grid 32.9 9 999.0
octree 2 027.6 1 188.1
loose octree 51.7 31.2

Table 1: The average number of neighbours (i. e. overlapping candidates) per sphere for
a completed packing of 10 000 spheres, averaged over 10 simulation runs.

5 Conclusion

The loose octree was invented as data structure for the spatial partitioning and indexing
in computer graphics. We have shown that it is also works remarkably well for the
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simulation of polydisperse granular media. It combines the flexible node size of the
hierarchical octree structure with the fast access of grid structures. It allows to insert
spheres into the tree in constant time without the need for traversing it. The tree levels
are filled in accordance with the particle size distribution which is a great advantage for
polydisperse mixtures with many small particles.

Best results for the simulation of polydisperse particle packings with a collective re-
arrangement algorithm were obtained with a hybrid data structure. It uses the loose
octree as a global data base for the spheres supported by Verlet neighbourhood lists as
local cache for a fast detection of overlaps.
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