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1 Introduction

This paper brings together multidimensional optimization, genetic algorithms and a fuzzy
control of the genetic algorithm. We start by describing the multidimensional optimization
problem.

We consider the cost function f(z) = (fi(x),..., fk(z)) where the solution z varies
overaset Sand f; : S = IR, 1 <1¢ < K, are the K components of the cost function. The
aim is to find solutions x which are ‘good’ with respect to all fi,..., fx simultaneously.
In a strict sense, such solutions will exist in rare cases only. Instead, we search for
undominated, so-called Pareto-optimal solutions. We say = € S dominates ' € S (z <
') if fi(z) < fi(z') forall i =1,..., K and f;(z) < f;(2) for at least one 1 < j < K. Let

P be the set of undominated or Pareto-optimal solutions (see e.g. [18]), i.e.
P:={zeS|-3reS 2 <z}

A Pareto-optimal solution cannot be improved with respect to any cost function f;

f

Figure 1: For the shaded area of possible cost function values, the undominated points

representing the Pareto-optimal solutions are on the bold curve.

without increasing the value of some other f;, see Fig. 1. We use the term ’cost function’
for the components f; as well as for the K—dimensional f = (fi,..., fx)

In the classical literature on multidimensional optimization problems, different ap-
proaches are used. Most of them avoid the direct search for Pareto-optimal solutions.

Often an artificial one-dimensional cost function f is used, e.g.

f(a;) := max_fi(z)

1<k<K

in the so-called min-maz approach or

flz) = ;; o fu ()

in the Bayesian approach where one has to fix coefficients «q,...,ax. Then the best
solution with respect to f is searched for. Multidimensionality is preserved in the lex-

tcographic approach where the cost functions fi,..., fx are assumed to be ordered with



decreasing importance. Then a solution x with lexicographically smallest cost vector
(fi(x), ..., fx(x)) is searched for. These approaches all have in common that they have to
make additional assumptions e.g. about the relative importance of the fi(z),..., fx(x).

Finding the set P (or an approximation to it as in our approach) is a much more
complex task. However, it gives greater freedom to the decision maker when selecting
solutions. He can compare different solutions even with respect to additional criteria
which have not been formalized (e.g. acceptance by the management or the public). If
for example, for K = 2, f; denotes the money invested into some project and fy the
benefit of this investment then P represents a cost-benefit analysis useful for a general
understanding of the problem, see Section 7 for an application. Visualising P (at least
in the two- or three-dimensional case) yields a curve or surface that can give some new
insight into the structure of the problem, e.g. about the hardness or sensitivity of the
different criteria. Note that min-max- (Bayes- or lexicographically) optimal solutions are
Pareto-optimal solutions themselves, i.e. the optimization with respect to these criteria
can be restricted to the set P.

Genetic Algorithms (GA) (see e.g. [14] for an overview) provide a general optimiza-
tion framework which is particularly suited for treating multidimensional optimization
problems and approximating Pareto-optimal solutions (see e.g. [5, 9, 10, 13, 17]). Gener-
ally, GA use a whole set G, (a population) of solutions from S at each step (generation)
n. The population G,, evolves by producing ‘offspring’ solutions from its elements using
nature-like operations like ‘crossover’, ‘mutation’ etc. We call this the production step
(cp. [1]). In the reduction step, the enlarged population G, of parents and offspring is
reduced to its original size forming the new population G, 1. This is done by selecting
solutions (individuals) x from G according to a real-valued function g(x) called fitness.
E.g. in an ’elitist’ reduction, only the N solutions with the best fitness values are selected
for G,11, where N is the size of G,,1 (population size). For more details on the elements
of general GAs see [14].

If the fitness g(z) is related to the cost functions fi,..., fk then in the long run,
individuals with low costs will emerge from the process. (Note that we minimize the
fitness as we are dealing with cost functions.) The sequence of populations G,, explores
the solution space S with an emphasis on individuals with (in our case) low fitness values.
In the one-dimensional case one would use g(z) := fi(x).

Different approaches for dealing with multidimensional optimization tasks have been
considered in the GA-literature. The undominated solutions found up to the n-th gener-

ation are taken as an approximation to the set P of Pareto optimal solutions. In [13], a



particular crossover operation is introduced that takes into account the multidimension-
ality of the costfunction. In [10], the way candidates are selected for crossover depends
on all the cost functionsfi, ..., fx and in [4, 5, 17|, the cost functions are used for the
reduction (selection of the next generation), similar to our approach. The three most
successful algorithms seem to be the MOGA (multi-objective genetic algorithm) of [4, 5]
the algorithm of [10] and VEGA (vector evaluated genetic algorithm) from [17]. More
details on these approaches are given in Section 4 below.

It has been noted before that the performance of the GA can be improved if the
algorithm is adapted to the random evolution of the population and that this can be done
best by a fuzzy control mechanism, see [8] for an overview and a bibliography on these
approaches. For one-dimensional problems the goal of the adaptation is mainly to prevent
‘premature convergence’ of the population. Based on some measure of diversity for the
population the parameters and/or operators of the algorithm are changed if necessary,
e.g. the mutation rate can be increased if the population tends to converge at an early
stage of the optimization.

We extend this approach to multidimensional optimization problems. Here the goal
is not only to prevent convergence but to enable a uniform approximation of the Pareto
optimal solutions. We use a fuzzy rule based system to select the appropriate type of
reduction and fitness function for each generation. In our present set-up the production
step (i.e. crossover and mutation) is not changed during optimization. It is supposed to
be done in a standard fashion depending on the problem and is not considered in any
detail here.

We start by explicitely defining the desirable ’goals’ for the evolution of the population
in Section 2. Here we formulate our belief of a 'good’ approximation of the Pareto-optimal

solutions in terms of desirable geometric properties of the cloud of cost values F,, where

Fp={(fi(z),..., fx(2)) |z € Gy }.

Similarly F,f denotes the cost function values for the extended population G;f. Next we
need to measure the deviation of a population from the goals. We do this in Section 3
by introducing suitable statistics for F;,. These values form the 'state’ [';, of a population
G- In Section 4, we fix a set of possible actions which could serve as ’countermeasures’ to
decrease the deviation as measured in I',,. These actions are different reduction methods,
based on the classical ones mentioned above. Finally we need to decide which action
should actually be taken, given the state of the present population. As we can formulate

our goals in vague terms only, a fuzzy controller seems to be appropriate, it is introduced
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Figure 2: The production - reduction cycle of a genetic algorithm uses a selection mech-
anism and a fitness function that are adapted to the state of the population by a fuzzy

controller.

in Section 5. Fig. 2 shows an overview of our approach which is summarized in detail in
Section 6. In the final Section 7 we present some empirical results made with this method.
We applied it to the optimization of timetables for railway networks and obtained good
cost-benefit diagrams for the investment into railway networks. Though at present, we
only have representative results with K = 2 cost functions, we formulate our model in

the following Section for general K.



2 Defining Desirable Goals

In order to make our concept transparent, we are explicitely stating the main goals of the
adaptation in advance. If one wants to define what a ‘desirable’ behaviour of the cost
value cloud F,, is, in order to approximate the Pareto-optimal points, one needs overall
knowledge of the cost landscape which is not available. Instead, we take a random sample
x1,...,xy of solutions and examine their cost function values. We take the statistical
properties of this sample as an estimate of basic properties of the problem.

In the context of genetic algorithms, a suitably chosen initial population Gy provides
a sample of the solution space. We therefore compare the statistics of Gy (or rather Fy)
with those of G, and collect the results in the state I',. I',, later on serves as input for
the fuzzy controller. As these values have to be computed very often, we can take only
very rough statistics of F;,. In fact we replace F,, by its enclosing rectangle. Therefore we

only have to calculate the following basic data for each population G,,, n > 0 :

N(n) == min fi(x)

5() = max /i)~ min £ )
i) = )+ Z

fori=1,..., K, see Figure 3. Note that most figures are for the case K = 2 only.

b

Figure 3: The main data of the population G,,.

Then A(n) := (A1(n),..., Ax(n)) describes the lower left corner of the enclosing rect-
angle of F,. pu(n) := (u1(n),...,ux(n)) is the center of the rectangle and o(n) :=
(o1(n),...,0k(n)) its diagonal. o1(n),...,ox(n) also represent the side lengths of the
enclosing rectangle. A(n) and o(n) completely determine the enclosing rectangle. Note

that u(n) and o(n) are fast (and crude) replacements for the mean and variance of F,.
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Our overall goal is to push F;, towards the origin 0 = (0,...,0) in IRf with a broad
but connected ’lower left’ front (as indicated in Fig. 4). If lower bounds L; > 0 for f;

P

Figure 4: The ideal evolution of the cost function values. The dots mark the (unknown)

Pareto optimal solutions.

(1 <4 < K) are known then the origin 0 should be replaced by the point (Ly,..., Lg)
in the sequel. Similarly, instead of the positive quadrant IRf = [0,00)® we would then
consider [L;,00) X --- X [Lg,00) as our image space of f.

From this overall goal we may derive the following more detailed goals which are
discussed below.
Goal 1: y(n) should stay on the line 0, £(0) connecting 0 and 1(0).
Goal 2: o(n) should not become smaller than ¢(0).
Goal 3: F,, should form a connected cloud, i.e. GG,, should not be split into separate
subpopulations.
Goal 4: The lower left corner A(n) of the enclosing rectangle of F,, should move along

0, M(0).
In Figure 5 the goals are illustrated. In Figure 5 (a) the center u(n) of population G,

deviates too much from the line 0, 4(0) whereas u(m) is quite close. Goal 1 reflects our
experience that it is particularly difficult to obtain good solutions in the ‘center’, i.e. with
all f;(z), 1 <i < K, small. Goal 2 avoids loosing the variation within a population which
easily occurs if the selection is too strict, cp. population G, in Figure 5 (b). Goal 3 is to
avoid situations as in Figure 5 (c¢), which typically appears in the system VEGA, see also
Figure 14 below. Goal 4 enforces Goal 1 in that it requires not only the center p(n) but
also the lower left corner of the enclosing rectangle to move along the line 0, \(0). This
controls the shape of F), to some extent, it should not differ to much from the shape of
Fy, cp. F, and F,, in Figure 5 (d).

Note that one could easily add other goals in a similar spirit. The above collection

turned out to be quite successful in our experiments.
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Figure 5: Illustration of the goals 1 - 4. The population in generation n is deviating from

(b)

the goals, whereas in generation m it is as desired.

These goals take the initial population as a guide line. Hence the algorithm itself will
depend on the initial population. Our experiments indicate however that the performance
is rather stable as long as the initial population is created randomly, i.e. without applying
heuristics for local optimization. This corresponds to the view of the initial population
as a representative sample of the solution space.

In the next section we shall introduce measures for the deviation of the population

from these goals. These measures will yield the state I, of the population, a ‘crisp’ state

(d)

in the fuzzy terminology which is later on transformed into a fuzzy state.



3 The State of the Population

The state I, of population G, contains the deviations A; = A;(G,) from the ith goal
and, if appropriate, additional information like the direction of the deviation ©; = ©;(G,).
We choose the measures A; such that they take on values between 0 and 1, 1 indicating

maximal deviation.
3.1 Deviation of the center p(n)

1 (0)

Figure 6: The distance of a point ¢ from 0, 4(0) is calculated in the plane determined by
¢, 1(0) and 0. Note that the intersections of this plane with the coordinate planes of IRf

need not be orthogonal to each other.

To measure the deviation of a point ¢ from the line 0, 12(0), we use a normed distance

as indicated in Figure 6 : let a be the point on 0, 4£(0) nearest to ¢ and let b be the point

where the line from c through a hits one of the coordinate planes. Put

c—a

d(c) :== 2

(€)= i )

where 32 = YK 42 is the Euclidean norm of a vector y = (y1,...,yx). 0(c) is the

perpendicular distance ¢ — a of ¢ from the line 0, x(0) normed by the maximal distance
b — a a point can have from 0, 4(0) (in that direction). The next Lemma shows how to

calculate 0(-) efficiently.

Lemma 1

With the notation as in Figure 6 we have for all ¢ = (¢y,...,¢,) € ]Rf

a) 0<d(c) <1

. ZkKZI Mk(0)2 min Ck
iy 1k (0)cg 1<h<K 11(0)

b) §(c) = 1



Proof : (a) follows from the definition. For (b) note that a is the projection of ¢ onto
1(0), taken as vectors in IR* (see Fig. 6), hence we obtain from elementary linear algebra
that for

oo 00 N m(O)e

p(02 i, e (0)?
we have
a=a-pu0) (3)
ie. for a = (ay,...,ax)
ap = - ug(0), fork=1,..., K. (4)

We want to find the point b as indicated in Fig. 6. To do so we travel from a past
the point ¢ until we hit a coordinate plane. Mathematically spoken we want to find the
smallest positive A such that the vector a + A(c — a) has at least one component equal to

zero. Then b = a + A(c — a). Assume that by = 0, then ¢, is the coordinate in which ¢

deviates most from the line 0, 4(0). It is important to know this coordinate because if we
want to force point ¢ back to the line, then £ indicates the right direction, see Section 4

below.

We first want to determine b. Let

Qg

)\k =

)
ar — Cg

then ay + )\k(ck — ak) =0and A\ > 0iff ¢ < ai. Let
Aer=min{ A, | 1 <k < K, < ag} (6)

be the smallest A\ > 0. Then b = a + A.(c — a) and from Eqgs. (5), (6) and (4) we obtain

5(c) c—a c—a 1 1
C fd fd = — =
b—a A(c—a) As min{ A, | 1 <k < K, ¢ < ag}

G — Cg

1
= max{)\—\lngK,ckgak}:maX{ |1<k<K,c, <a}
k

— 1—min{ﬁ|1gk§K,ck§ak}
ag

1
= 1——min{ Cko ‘1§k§K,0kSak}

a 1(0)
1 . Ck
= 1—am1n{uk—(0)|1§k§K}. (7)

For the last equation note that for the minimizing indices k* with

L min{c—’“ugkgK}
i+ (0) 11(0)

10



Figure 7: In (a) the point b lies on the fi, fo-hyperplane, determined by ©,(G,) = {3}
for the case K = 3 . (b) If we reduce the values of fi, fo in G — n and allow larger values

for f3 then the center u(n) will be forced closer to 0, 1(0)

the constraint cp« < ag« automatically holds. To prove this, assume that cg« > ap« =

« - g+ (0). Then, from the minimizing property of £* we obtain for all &

Ck > Cl > Qfo* —a
pe(0) — pe(0) T pge(0)

Multiplying with 1 (0)? and summing over all k then yields a contradiction :

() = 3 enn(0) > 0 30 = 1G5 1200 = (u0).0
[
With 6(-) as in Eq.(2) we put
84(Ga) 1= S )

As mentioned above, the minimizing indices k£ in Eq. (7) determine the direction, i.e.
those cost functions f; in whose direction u(n) deviates most from 0, 4(0), see Fig. 7.

Hence we keep this information in an auxiliary variable ©; :

01(Gy) = {l [1<I<K, ’Ziﬁ; = min, ’;’;EZ; } (9)

In most cases, ©; will contain only one value. Note that for K = 2, ©;(G,) = {1} means

that p(n) lies above the line 0, z(0) and ©(G,) = {2} means that u(n) lies below the

line 0, 1(0), see Figure 8.

11



Figure 8: The position of the center u(-) for ©;(G,,) = {1} and ©,(G,,) = {2}.

3.2 Deviation of the Variation o(n)

To measure the violation of goal 2 we compare the total ‘span’ 1< 0;(n) of all values
in F, with those in the initial population. In order to obtain values between 0 and 1 we
define

M] (10)

ZiK;1 0i(0)
where [-]* denotes the positive part with [y]t = y for y > 0 and [y]* = 0 for y < 0.

Ao(Gy) = [1 -

Values Ay(G,) near 1 indicate that the population lost diversity in its cost function
values whereas populations with Y5, o4(n) as least as large as in the initial population
have Ay = 0. Of course, this is only a very rough indicator, but in conjunction with
the other components of I',, it turned out to be sufficient. An analogon to ©; seems not

reasonable for goal 2.

3.3 Deviation from Goal 3

Goal 3 requires a ‘connected’ population. Deviation from this property could be measured
using sophisticated methods from statistical cluster theory (see e.g. [7]). These methods
usually require at least O(NN?) operations.

In our context, we only need a rough indicator of configurations as in Fig. 5 (c¢). To
detect separation into subpopulations we shrink the enclosing rectangle of F), around its
center u(n) until it only contains the innermost third of the points f(z), x € G,. If the
points in F,, are evenly spread then the shrinking factor should be I\(/m If they are
concentrated in the outer part of F,,, as it will be the case if F}, tends to split into several
parts, then the shrinking factor should be larger, near one, see Figure 9.

To shrink the enclosing rectangle we multiply the side length vector o(n) as defined in
Section 2 with a factor 0 < 7 < 1. Note that a point f(z) = (fi(x),..., fr(x)) lies within
a rectangle shrinked by r iff

12
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Figure 9: The inner rectangle is obtained by shrinking with the factor r = {/1/3 ~ 0.57.
(a) shows a population with A3z = 0, whereas in (b), the inner rectangle will contain less

than 1/3 of all solutions, hence Az > 0.

1 1

pe(n) — grox(n) < fu(@) < p(n) + Srox(n) (11)

for all 1 < k < K, in other words iff

(cp. Figure 10). Then |[{z € G, ||d(z) < r}| is the number of solutions in population G,
with cost function values within the rectangle shrinked by factor 7. Now let ps(Gy) be
the smallest factor such that the shrinked rectangle contains 5-100% of the points of Fy,,
i.e.

ps(Gp) =min{r >0 | |{z € G, |dz) <r}| >N},

see Fig. 9. ps(G,) is a kind of empirical 5 quantile with 0 < pg(G,) < 1for0 < g <1and
p1(G,) = 1. If the points of F,, are evenly distributed around u(n) then pg(G,) ~ ¥/B.

A measure for the deviation from an even distribution therefore is (with g := 1/3) the

f

Figure 10: A point (fi(z), fa(x)) lies within the rectangle shrinked by a factor r if it fulfills
Eq. 11

13



difference [p1/3(Gr) — {/1/3]". In order to obtain values between zero and one we divide
this expression by its maximal value 1 — {/1/3 and obtain after simplifying

p1/3(Gn) - V3 — lr (12)

¥3-1

Again this is only a very rough measure that does not necessarily detect any kind of

A3(Gr) = l

splitting of the population but it turned out sufficient for our purposes. Typically, a
non-separated cloud will have more than one third of its points in the inner rectangle (i.e.
Az = 0) as its point will be more sparse near the border of the enclosing rectangle, see
Fig. 9 a). This gives our measure a bias towards zero and triggers the action for a more
spread population (see Section 4) more often. This is a desirable effect as it counteracts
the general tendencies of GAs to loose variation within the population.

A definition of ©3(G,) does not seem reasonable.

3.4 Deviation from Goal 4

Goal 4 requires the lower left corner A(n) of F), to move along the line 0, \(0). Hence we

may use the distance measure from 3.1 with x(0) replaced by A(0) and obtain

X (002 IRVIC)
YK Ae(0)Ag(n) 1<k<K Ak (0)

Ay (Gy) = . (13)

In ©:(G,) we only kept the minimizing coordinates, i.e. those in which u(n) deviates
most. Here, we keep more detailed information about the position of A(n). Let

M)/ A(0)
PE) = KN ) 0)

(14)

then 0 < pi(n) <1 and K p(n) = 1. pi(n),..., px(n) represents a relative weighting

of the coordinates giving least weight to those coordinates in which A(n) deviates most

A, (0)

Ay (N)

A;(n) A1 (0)

Figure 11: An example with A\(n)/A(0) ~ 2 Xa(n)/A2(0), hence we have p;(n) =
2/3,p2(n) = 1/3.

14



from 0, A(0), see Figure 11. This will be used later to calibrate the countermeasure.

Therefore we put
04(Gy) :={p1(n),...,px(n)}. (15)

Now the complete (crisp) state of population G, is given as
Lo = (A1(Gr), As(Gn), A3(Gn), As(Gr), ©1(Gr), ©4(Gr)) (16)

defined in Egs. (8), (10), (12), (13) , (9) and (15).

15



4  Actions to Reduce Deviation

Next we want to identify possible control actions that could help to diminish the deviation
of a population. We restrict ourselves here to different reduction methods.

As indicated in Fig. 4, an “ideal” state is given by
r-:=(0,0,0,0,{1,...K},{1/K,...,1/K})

with no deviations, high variance, and ‘connected’ population. We need a decision on
what kind of reduction “G,} — Gp41” is to be used given an arbitrary state I, =
(Aq,...,A4,01,0,). The reduction should lead to a population G, which has its state
[p41 ‘closer’ to I'* than T, if the values Ay(Gy,), ..., A4(G,,) are too large.

We define a set of reduction methods that from our experience are suited to lessen
the deviation for each of the goals. Our methods are modifications of standard methods
from the literature. We briefly characterize their behaviour in our experiments (see also

the quantitative description in Section 7 below).

“E” (Elite): Use the fitness function

K
g(z) = ; fr(x), rzeS
k¢©1(Gn)
and take the N best individuals of G, for the next generation G, 1. Here, the f
with k£ € ©1(G,,) are dropped from the fitness function.
Let us recall that ©,(G},) contains those indices k where p(n) deviates most from
0, 12(0). Hence, the selection pressure during the reduction with g(-) as above, will
concentrate on the coordinates k ¢ O(G,). Consequently, in the cloud F,,; the
points will have smaller values in the coordinates k ¢ ©1(G,,), whereas the f;- values

for k € ©1(G,,) will tend to increase. Then, u(n + 1) will lie closer to 0, 4(0) than

wu(n), see Figure 7 (b) for an example.

“P” (Pareto-rank): This is taken from [4, 5]. Each individual z is ranked by the number
rz)=1+|{2' € G} |2/ <z} (17)

of dominating co-individuals. r(x) is called Pareto rank of x. The smaller r(z) is,
the better the solution z is. The N solutions with lowest r(-)-value are selected for
Gp41- From our observations this reduction will tend to concentrate the cloud F,,, 1,
reducing the variation and possible tendencies to split. If applied constantly, a large

deviation of the center may occur as shown in Figure 16 below.

16



“V” (VEGA): The VEGA algorithm (see [17]) takes the & best solutions from G, with
respect to f; and puts it into G, 1, then, from the remaining solutions in G, it
takes the % best solutions with respect to fo and puts it into G, 41 and so on until
all K cost functions fi,..., fx have been used. As has been noticed before (see
[10]), this procedure leads to a splitting of the population as indicated in Fig. 5 (c)
(see also Figure 14 below). The positive effect is that the overall variation in the

population will increase.

“V** (VEGA*): This is a slight modification of VEGA. Instead of a fixed fraction &,
take the N - pg(n) best individuals with respect to fi, 1 < k < K, where the pg(n),
see Eq. (14), are obtained from O4(G,,).
To understand the effect of this choice let us consider a coordinate £ with large
value py(n). Then the deviation of A(n) from 0, A(0) is relatively small in the k-th
component. As N - p(k) is a large portion, many individuals are chosen according
to fr. For these individuals the values of fy, k' # k, are not taken into account
for reduction, hence the variation in coordinates k' # k will increase in F ;. This

enables the next population to decrease the distance of A(-) from 0, A(0). Similar to

VEGA, this procedure tends to spread the population, see also Figure 15.

Note that each of these methods has several disadvantages if used constantly. The main
point of our method "FuReGa” (Fuzzy Reduction Genetic Algorithm) is the adaptation
to the actual state of the population after each generation.

In [10] a method is presented where the two individuals for crossover are selected
with a probability proportional to the fitness function g(z) := Y «; f; where aq, ...ax are
chosen randomly for each pair of individuals. The offspring individuals are taken as new
population without any additional reduction. The system also includes the survival of
some of the good individuals without crossover or selection. This method seems to be
better than the others if applied constantly. Still the experiments in Section 7 show that

our system yields better results.
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Figure 12: The membership functions used to describe the two complementary fuzzy sets
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5 The Fuzzy Reduction Step

Though the different countermeasures in Section 4 are chosen to meet our goals, their
properties can only be given in vague terms, in particular as they are of stochastic nature.
For the selection of the appropriate reduction method we therefore suggest a fuzzy rule
based system. It takes as input the state I',, of the present population and yields one of the
methods “E”, “P”, “V” or “V*” as output. We follow the fuzzy rule based system (FRBS)
as treated, e.g., in [2] and [3]. Instead of introducing the method in all its generality we
give a step by step explanation of it applied to our context.

We start, by classifying the state I',, with respect to each of our four goals as either bad
or good. More precisely, we define fuzzy sets A; and B; for each of the goalsi=1,...,4.
The set A; represents the predicate “deviation A;(Gy) is too high”, whereas B; represents
“deviation A;(G,,) is tolerable”. The fuzzy sets are defined by their individual membership
functions mu, resp. mp,. mg,(z) is a value between 0 and 1, expressing the degree
(belief) to which the point z belongs to set A;, i.e. the degree to which we are willing
to consider a deviation z as ’too high’. Though the predicates represented by A; and
B; are complementary, a point may well have positive membership values for both sets
expressing the fuzzy nature of this classification. E.g., for a given deviation z we may
have my, (z) = .3, mp,(z) = .7 which means that the deviation z is tolerable though not
zZero.

To keep things simple, we chose as membership functions for all : =1,...,4
ma,(2) == z and mp(z) = 1—2

for 0 < z <1, see Fig. 12.
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IF
F,isinstate || 1 | 2 | 3 | 4 | 5 | 6

AND Ay | Ay | By | By | By | By
AND * |k | % | As | By | Bs
AND Ay | By | * * 1 Ay | By
THEN

use method V| V| E|P|V*|V

Table 1: 6 rules for all combinations of the four properties. A “*” in the i-th row means

'A; OR By’

To simplify notation, we put my,;(I'y) = my,(Ai(G,)) and similarly for B;. The
complete fuzzy classification of a state I',, with respect to the eight predicates is the

sequence of its membership values for the different fuzzy sets :

M(Fn) = (mA17 MAy, M A3, M Ay, VB, TRy, TN B3, mB4)(Fn)

= (A, A, A3, Ay, 1 — A1 —Ag, 1= Ay, 1—Ay) (18)

where we have written A; for A;(G,) for short. Note that only the A;-parts of state I';,
are evaluated.

In the next step, this fuzzy classification is fed into a set of rules. Each rule has the
form “IF ( condition ) THEN (action)”. Here, conditions are AND-combinations of the
predicates described by the fuzzy sets A; resp. B; and actions are the reduction methods
introduced in the last Section. The rules we used in our application in Section 7 are given
in Table 1. E.g., rule 4 in that table tells us, that if the deviation of u(n) is not too
high (“B;”) and the variation within the cost values is large enough (“By”) and if the
population is split (“As”) then, no matter how the fourth goal is met (“*”), we should
use method “P” for the next reduction. This is reasonable because we know that “P”
diminishes variation. Formulating the set of rules is a difficult step as we have to cast our
vague experience into a formal framework.

We now have a set of rules referring to the predicates and a fuzzy classification M (T',,)
of the state of the population with the membership values for all these predicates as

given in Eq. (18) . To apply the rules to M(I',) we multiply the membership values of
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fuzzy sets / predicates rules
IF
deviati o 12 6
Cram | 100 high | tolerable Fn_isin state
goal no. B,
1 A, B, AND Ag| Ay By
goals) 2 A, B, AND * Bs
measures 3 As Bs AND A, By B,
4 A, B, THEN
use method Vv v
g . J _ J
i l \
| measuring crisp fuzzy
— deviation —»| state |—fuzzification inference
from goals M
. acti-
reduction - vation
method | <——— defuzzification -

rates
a ()

+
for Fn

Figure 13: An overview of the fuzzy rule based system as used by our algorithm FuReGa.

those fuzzy sets combined by AND’s in the IF-part of the rule (and add them for OR’s
which are implicitely contained in the “*”-entries of the table meaning A; OR B;). This
transfers the sequence of membership values in M (T',,) into one real number for each rule.
This number reflects the degree of fulfillment of the corresponding rule and is called the
activation rate of the action in the THEN-part of the rule. If there are several rules with
identical actions in their THEN-parts, then the values from all these rules are added to
yield the overall activation rate of this action. In our example we obtain as activation

rate ap for action “P” from rule no. 4 :

The activation rates for the other actions from Table 1 are

aE(Fn) = Al(]_ - Az) (rule 3)
O!V(Fn) = Ag(l — A4) + (1 — Al)(l — AQ)(l — Ag)(l — A4) (TUIGS 2, 6)
(0374 (Fn) = A2A4 + (1 - Al)(l — Az)(l - Ag)A4 (rules 1,5)
Activation rates give a weight to the actions expressing the intensity by which the rules
recommend each action given the fuzzy classification M (I',,) . There are different ways of

defuzzification, i.e. different ways to finally select the action that is actually activated :

e.g. one could choose the one with maximal activation rate. For our table of (exhaustive)
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rules with the complementary membership functions it can be shown that the activation
rates (ag, ap, ay, ay«) always represent a probability distribution on the set of possible
actions {"E”, “P”, “V”, “V*”}. It therefore seems natural to select an action randomly,
according to this distribution.

Figure 13 sums up our fuzzy rule based system.
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6 Summary of the FuReGa Method

We can now summarize our method FuReGa with all its steps. Note that we do not
discuss how to choose the population size, the mutation probability and other details of
the GA. Instead we concentrate on the new features of our method. See also Fig. 2 and

Fig. 13.

(1) Produce an initial population Gy of size N € IN. Preferably, the individuals should

be produced at random.
(2) Put generation number n = 0.
(3) Steps 4 and 5 could be performed in parallel :
(4) Select the appropriate selection method for G, :

(4.1) Evaluate the present population G,, by calculating the enclosing rectangle with
wu(n),o(n), A(n) as in Eq. (1).
Calculate the state T', as in Eq. (16).

(4.2) Apply the fuzzy rule based system as in Fig. 13 :
Determine the membership values of I';, for the fuzzy sets A;, B;, i =1,...,4.
Determine the activation rates for the actions “E”, “P”, “V”  “V*” from a
table of rules as in Table 1.

Select a reduction method according to the activation rates found.

(5) Produce offspring from population G, using standard crossover and mutation mech-

anisms. The result is an enlarged population G} of size N+ no. of offspring.

(6) Apply the reduction method selected in step 5 to the enlarged population G;. The

result is population G, of size N.

(7) Update the set P of Pareto-optimal solutions found so far by adding new undom-
inated solutions and deleting those which have become dominated by the newly

found solutions.
(8) Increase the generation number n = n + 1.

(9) If a stopping criterion becomes true, e.g. n exceeds a given number of generations
then stop. P then contains the approximation to the Pareto-optimal solutions.

Otherwise go to step 3.
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7 Cost benefit analysis for timetables

As a practical example, which was developed in cooperation with German traffic compa-
nies, we considered a problem of timetable optimization for railway networks.

Railway companies in Europe are presently trying to minimize the waiting times that
occur when passengers have to change lines within a network, see [6, 11, 12] (in Ger-
man). To obtain so-called integrated timetables with no waiting times at the important
stations the companies have to invest into their networks (tunnels, faster trains, larger
stations, etc.). We implemented a system ‘HiTT’ that uses the German intercity network
to demonstrate the effect of invested capital on the minimal total waiting time W of
the net. This is achieved by applying FuReGa to timetables with the two cost functions
'waiting time’ and ’additional investments’. For the details of the system see e.g. [15, 16].

A traffic net in this model consists of a fixed number of stations and tracks connecting
them. There is a fixed set of lines (i.e. sequences of stations and tracks) which have to be
served periodically with given frequencies. For each track there is also a set of possible
improvements, each listed with the amount of money necessary for its realization and its
effect on the running time of the trains on that track. These can be viewed as local cost
functions ¢;(t) giving the amount of money necessary to shorten the travel time on track
7 by t minutes.

A time table x = (7, p) consists of scheduled departure and travel times. 7 = (m)
is the vector of departure times m; ; for each station s and each line [. As the trains are
assumed to run periodically every hour, 7 is simply the offset from the full hour. ¢ = (;)
is the vector of scheduled travel times p; on each track i. The time table x = (m, p) is
evaluated by two cost functions. fi(z) = fi(m, 0) sums up the waiting times from all
possible line changes in the net, each change weighted with the number of passengers
expected to use this change. The second cost function fo(z) = fa(p) is the sum of money
as given by ¢;(+) that has to be invested into improvements of the tracks in order to obtain
the travel times prescribed by p.

The cost function values of the Pareto-optimal solutions (time tables) then yield a
cost-benefit-curve showing the effect of investments on the overall waiting times. An
integrated time table z*, e.g., would have f;(z*) = 0.

In the genetic algorithm formulation of this model we used the = as individuals. Mu-
tation and crossover can easily be formulated as z consists of two strings 7 and p varying
in simple rectangular sets, such that any disturbance or k-point crossover leads to feasible

time tables, see [15] for details.
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Figure 14: All cost values of 1000 generations using ”V”

We first applied the procedure “V” (VEGA) to this problem. Fig. 14 shows the
(fi(z), fa(x)) pairs of all individuals produced in 1000 generations constantly using VEGA.
The black points refer to timetables presently selected for the next population G,,11. The
dark grey ones are the values from G, that were not selected for G, and the light
grey points are from former populations. The population G}, is obviously split into two
extreme parts. Its lower envelope gives only a poor impression of possible Pareto-optimal
solutions. A similar result for “V*” is shown in Fig. 15. In Fig. 16 the corresponding
result for “P” ( from [4] ) is shown. Here, the cost function values are concentrated very
much and the population evades the difficult central part of the Pareto curve.

In Fig. 17 the corresponding result for our new fuzzy approach FuReGa is shown.
Here, the lower envelope is broader and covers more of the central region. Note that in
Fig. 17 the scaling of the axis is different from the other pictures.

The result with the procedure from [10] is shown in Figure 18. Though the population
has the desired shape the overall quality of our FuReGa approach is slightly superior in
this example.

Though these pictures show only one run, they are representative for the majority of
trials we have made.

In Fig. 19 the deviation A;(G,,) of u(n) from the line 0, 1£(0) is plotted for the procedure

“P” used for all 1000 generations (upper line) and for our FuReGa approach. As can be
seen, the fuzzy adaption reacts to a deviation and keeps it on a much lower level than with
“P” alone. Similar pictures can be given for the other combination of goals and reduction
methods. They enable us to qualify the behaviour of the different methods when applied
repeatedly and may serve as an empirical basis for the formulation of the inference rules

of the fuzzy rule based system.
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Figure 17: The cost values after 1000 generations using FuReGa. Note that the scaling
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Figure 18: All cost values of 1000 generations using the procedure from [10]
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8 Conclusion

We introduced an adaptive reduction scheme that switches between several multi-objective
reduction methods. It evaluates the deviation from explicitly formulated goals as simple
numerical values. It feeds them into a fuzzy rule based system that selects a suitable
reduction method.

Empirical tests with a (‘real world’) timetable optimization problem with a two-
dimensional cost function showed that the shortcomings of the classical methods of multi-
criteria genetic algorithms could be avoided by the adaptive character of our procedure.
Still, these limited experiments are not enough to finally decide on the empirical quality
of the procedure, in particular in higher dimensions than K = 2. Presently we are incor-
porating further cost functions (number of vehicles needed to run the timetable) into our
timetable optimization system. First results look very encouraging.

Also we are experimenting with additional goals and measures of deviation. For a
more comprehensive characterization of the reduction methods needed to develop better

rules we are planning to perform more experiments with different reduction methods.
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