Some New Results on Simulated Annealing
Applied to the Job Shop Scheduling Problem

M. Kolonko
Institut fir Mathematik, Universitit Hildesheim
Marienburger Platz 22, D-31141 Hildesheim
Germany !
13.12.96

Abstract: We present two results about heuristic solutions to the job shop scheduling problem. First,
we show that the well-known analytical results on convergence of simulated annealing do not hold in
the application to the job shop scheduling problem. We give a simple counterexample where the
simulated annealing process converges against a suboptimal schedule. To overcome this problem at
least heuristically, we present a new approach that uses a small population of simulated annealing runs
in a genetic algorithm framework. The novel features are an adaptive temperature control that allows
reheating’ of the simulated annealing and a new type of time-oriented crossover of schedules. Though
the procedure uses only standard properties of the job shop scheduling problem it yields excellent

results on the classical test examples and improves some of their best known solutions.

KEYWORDS: SCHEDULING THEORY, SIMULATED ANNEALING, ADAPTIVE TEMPERATURE SCHEDULE,

GENETIC ALGORITHMS, HYBRID OPTIMIZATION

'now at Institut fiir Mathematik, Techn. University Clausthal, Postfach 1253, D-38670 Clausthal-Zellerfeld, Germany,

email : kolonko@math.tu-clausthal.de

1 Introduction

The job shop scheduling problem (JSP) is a well-known NP-hard problem of combinatorial optimiza-
tion. It is also known to be a very difficult problem such that some test problems of moderate size are
still unsolved. Modern heuristic methods as simulated annealing (SA), genetic algorithms (GA) and
tabu search take up a growing space in the literature on the JSP, see e.g. [4] for a recent comprehensive
overview.

In this paper we present a negative and a positive result. The negative result is that SA, when
applied to the JSP, is no longer a convergent stochastic process, though this is generally assumed
in the literature (see [21] and [22], references to [22] are made in many papers on JSP). The reason
for this is that the standard neighbourhoods used for the JSP are not symmetric. It turns out that
if suboptimal solutions are easy to access but difficult to leave by the SA process, then the process
may converge to these non-optimal states. We present a simple counterexample for which the limiting
distribution, that can be calculated explicitely, concentrates on a suboptimal schedule for decreasing
temperature values. Usually, SA implementations return the best solution seen during the run as
their result. The lack of convergence means that the sequence of solutions produced by SA need not
approach the optimal solution even after an excessive amount of computations. Hence, also the best
solution seen after a finite number of steps will tend to be worse than under a convergent procedure.
To make this point precise one must have detailed information on the rate of convergence which is a
difficult problem with SA (see e.g. [18]).

As a positive result we present a combination of simulated annealing and genetic algorithms with
some new ingredients. The population of the genetic algorithm consists of independent simulated
annealing runs. They use an adaptive temperature control that allows to leave local minima faster
than the standard cooling schedules and still preserves the classical convergence properties. As the
asymmetric neighbourhoods of the JSP may distroy this convergence too, we allow the solutions of the
SA runs to crossover in each generation using a new time-oriented crossover operation. This improves
the empirical behaviour of the procedure considerably when compared with simple SA.

We start with a short formal description of the JSP in section 2. In Section 3 we briefly collect
the main results about the convergence of simulated annealing, show where the JSP fails and present
the counterexample. The genetic algorithm framework and the new crossover operation for schedules
are defined in Section 5. Also, the main ideas of the adaptive temperature control introduced in [14]
are sketched there. Finally in Section 6 we give some implementational details and our computational
results for the hard problems from the standard test library JSPlib. Though the procedure does not
use any problem specific knowledge except the standard methods to produce neighbour solutions, the

computational results are quite excellent.

2 The Job Shop Scheduling Problem

In a JSP there are given n jobs , each consisting of m operations and there are m machines each of
which can handle exactly one of the m operations of each job. The order in which the operations of

one job have to be performed is fixed. Each operation needs a certain amount of processing time. The

aim is to find an order z of the operations on each machine such that the finishing time c(z) of the
last job (the overall processing time for all jobs) is minimized. An overview about different scheduling
problems can be found in [5].

A problem instance can be given as a directed graph where the vertices are the operations (plus a
start and a stop node) and the arcs between operations of one job define their required order, see Fig.
1. A solution z can then be represented by additional arcs between the operations on each machine
in the order determined by z, see Fig. 2. A solution z is feasible, if no deadlocks occur, i.e. if there

are no cycles in the graph. Let S denote the set of feasible solutions.

Job |

Job I

Job I

Job IV

Sqo- S -
| | I
| | |

Machine A Machine B Machine C

Figure 1: A job shop scheduling problem with four jobs, each consisting of three operations (indicated by rounded

boxes) which have to be performed on the machines A,B and C in the order of the arcs.

Job |

Job 1l

Job I

Job IV

Figure 2: For the problem instance from Fig. 1 the dotted arcs represent a feasible solution z, i.e. a feasible order of

the operations on each machine

Let J,0O and M denote the set of jobs, operations and machines. We write o' < o if operations
o',0 € O belong to the same job and o' has to be finished before operation o can start. We write
o' <; 0 if 0,0 have to be performed on the same machine and if o’ precedes o in the precedence given
by a solution x. Let

o <0 1= <(0’ <0) V(o <, o)).

If x is a feasible solution we can visit the nodes (operations) in the so-called topological order, i.e.

we can enumerate the operations in a (not necessarily unique) way as (o1,...,0m,) such that each
operation o appears after all its predecessors with respect to <;. Let p(0) denote the processing time
of operation 0. Then we can define the earliest starting time ¢(0) of each operation o € O under a

feasible solution z recursively by
t(0) := max{t(o') + p(d') | o' =, 0, o' € O}

with max @ = 0.

The costs ¢(z) of a solution z are then obtained as the latest finishing time
c(z) = max{t(o) + p(o) | 0o € O}.

In the representation as a graph, ¢(z) is the length of a longest path from start to stop where the length
(duration) of a path is determined by the processing times of its nodes. Edges between operations on
the same machine lying on a longest path are called critical edges.

There is a huge literature on heuristics for the JSP, see e.g. [5], [4], [17]. For an iterative improve-
ment, most of the authors recommend the so-called N1 operation ([5], p. 210) which produces a new
feasible solution from a given one by reversing one critical edge and adapting the adjacent edges, see

Fig. 3. Other operators that are in use also reverse edges on longest paths.

\
’ A

V ;
() ——=()

Figure 3: The figure shows part of a longest path. The critical (dotted) arc is reversed and the adjacent edges are
adapted

3 Convergence of Simulated Annealing and the JSP

Simulated annealing (SA) is a stochastically relaxed local search method allowing to climb ’uphill’ in
the cost function landscape. It was introduced and studied e.g. in [11], [6],[15], [8], [18], [2], [13]. See
[20] for a survey of the early literature. The first papers studying SA for the JSP seem to be [21] and
[22].

We first sketch the main principles of SA and the conditions for its convergence for the general
case. Let S be a finite state space and c¢: S — IR} a cost function to be minimized. Given a present
solution z € S, SA chooses at random a candidate y from a predefined neighbourhood N(z) C S of
x using a generating probability G(z,-). If y is an improvement, i.e. ¢(y) < c(z), then y replaces z
and becomes the new solution. If ¢(y) > ¢(z) then y is still accepted with the acceptance probability
afz,t,y), where t, the so-called temperature, is a control parameter. With probability 1 — a(x,t,y),

the candidate y is rejected. This procedure is repeated until some stopping criterion is fulfilled.

Usually, G(z, -) is the uniform distribution on the neighbourhood N(z) or some other distribution

with G(z,y) >0 <= y € N(z). «a is chosen as

1 if ¢(y) < c(x)
alz,t,y) = - with t>0 1
(:%,9) { exp(—ic(y);c(m)) if e(y) > c(x) M
(the so-called Metropolis acceptance probability). Hence the probability to accept a candidate y with
c(y) > c(z) decreases with decreasing temperature ¢, forcing the process to a stable behaviour in the
long run.
More precisely, the process of solutions is modeled as a Markov chain (X,,),>¢ with state space S

and transition probability

Pz,y) = G(z,y)a(z,t,y) ifz#y @)
T = Sy G y)ala,ty) ifz=y

where we assume (1). For the so-called homogeneouos analysis with fized temperature ¢ > 0 we have

the following convergence theorem.

Theorem 1

Let S* = {z € S | ¢(xz) = mingyeg c(z')} be the set of optimal states and let Si,..., Sk be the

recurrent classes of the Markov matrix G(-,-). If, for all 1 <7 < k, we have

(i) S; N S* # 0 and
(i) S; N (S—S8* #0

then the following holds.

a) For any 1 < i < k, let Q; be the matrix P, restricted to the set S; x S;. Then @Q; has a

unique stationary distribution 7} which is also the limiting distribution of Q;.

b) For any zy € S we have (for ¢ > 0 fixed)

lim P(X, =z | Xo=1z9) < W%(w) forresS;, 1<i<k

n—oo

and

n—oo

k
lim P(X, =z | Xo=mz9) = 0 forz¢|]Si
=1

Thus if each recurrent class S; contains optimal as well as non-optimal (i.e. rejectable) states then
the local stationary distributions 7} yield an upper bound for the limiting distribution of P, with fixed
temperature ¢ > 0. The limiting behaviour of 7} for ¢ — oo will be examined below.

As Theorem 1 follows from standard Markov theory, we only sketch the proof. First, we have for

the Metropolis acceptance probability

— max{c(z') — cfy')|z',y € S}) >0

hence it follows from (2) that the recurrent classes of P, are those of G for ¢ > 0. Moreover, by (i)
and (ii), a recurrent class S; contains an optimal state * which has a non-optimal neighbouring state

y € S;. Hence S; is aperiodic. This follows from

P(X;=2z"Xp=2") = 1— Z G(z*,y)a(z* t,y)
y'Fx

> 1- Y G(a*y) - G(a",y)a(z",t,y)
Z/'?éﬂ%y

> 1- Z G(.’L‘*,y,)
y'#x
= 0.

as 0 < a(z*,t,y) = exp(—(c(y) — ¢(z*))/t) < 1 and G(z*,y) > 0. Hence, each S; is a recurrent,
aperiodic class of P; and (a) follows.

Now (b) follows from (a) as in [22]. For z € S;, we have (cp [10], p. 91)

nlggoP(Xn =z | Xo =)

= P(X,, € S; for some m |Xo = x¢) - 7i(z)
<),
whereas for transient states z the limiting probability is 0. Il
We call w = (zg, ..., x;) a path of length | from z to y if zy = z,2; = y and G(x;, z;+1) > 0 for all
0<i<1l-1. Let é(w) := max{c(z;) | 1 <1i <[} be the maximal costs on the path w = (zg,...,z;) -
Then
n(z,y) = min{é(w) | w is a path of arbitrary length from z to y}

denotes the minimal cost height that has to be climbed on a path from z to y.

Theorem 2

Assume that G is an irreducible Markov matrix and that for all z,y € S

n(z,y) = n(y,z) 3)
then for any z € S — S*,
limm(z) = 0,

i.e. the steady state distributions concentrate on the optimal states for ¢ — 0.

For a proof see [7]. The so-called weak reversibility (3) includes the symmetric case where
G(z,y) = G(y,z) and the uniform case where G(z,-) is the uniform distribution on N(z) for each

z € S and where in addition N(-) is symmetric in the sense that

y € N(z) = z € N(y) (4)

for all z,y € S. Note that symmetry of the neighbourhood does not imply symmetry of G as can be
seen from Fig. 4. Of course the neighbourhoods in Fig. 4 can be made symmetric by adding edges
between pairs of the outer vertices turning the planar structure into a torus. But then also vertices

which are 'far apart’ in the original structure become close neighbours which may be undesirable.

Figure 4: Let the neighbourhood N(z) of a vertex = be the adjacent vertices. Then N is symmetric as the graph is
undirected, but G(z,y) = 1/3, G(y,z) = 1/4, i.e. G is not symmetric.

In the symmetric case m; can be given explicitely as
- el — /)
T\ x) =)
yes exp ((c(a*) — c(y))/t)
where z* € §* is an arbitrary optimal state. Also in the the uniform case
 IN@)exp ((e(@) — e(@)) /1)
Syes INW)|exp ((c(z®) — c(y)) /1)

see e.g. [15]. Unfortunately, in [15] condition (4) for the uniform case is used only implicitely and not

T\

stated explicitely. Other authors seem to have overseen this.
If G has more then one recurrent class, then Theorem 2 may be applied to each recurrent class

separately leading to the following general result.

Theorem 3

If each recurrent class of G contains optimal as well as suboptimal solutions and if G is weakly

reversible then for fixed ¢ > 0 the limiting distributions

lim P(X, =z | Xo =x0) =: p(z0,)

n—00

exist for all zy,z € S and have the property
1. =
lim p (z0,) 0

for z ¢ S*.

Examining the steady state distributions for fixed ¢ > 0 is only a very rough approximation to the
real solution process. In most applications, the temperature is changed constantly during the opti-
mization leading to an inhomogeneous Markov chain or even non-Markovian processes. Convergence
results for this case are more involved, see e.g. [2], [8], [13], [14] and [18], all of which require symmetry

or weak reversibility of G.

To our knowledge, these general convergence results have not been applied correctly in the literature
on the JSP. In [1], condition (i) of Theorem 1 was falsely stated to be necessary and sufficient for the
convergence of the SA process ([1], 1. (Ny) (iii)). [21] resp. [22] used results as in Theorem 3 but did
not check conditions (ii) of Theorem 1 and condition (4) which both need not hold in the application
to the JSP. If condition (ii) of Theorem 1 is violated for S; then this class consists of optimal solutions
only and the process cycles periodically through these states. There is no formal convergence of the
process in this case, but as it will be in some optimal state in the long run this is of no practical
importance.

To see that condition (4) need not hold for the JSP, assume that a solution y has been obtained
by reversing a critical edge in a solution z. This edge need no longer be on a longest path in g, hence
z need not be a neighbour of y. Even if there is a path from y back to z it need not be at the same
cost level as is shown in the counterexample below. Without such symmetry, Theorem 2 or similar
results need not hold. The counterexample in the next section is irreducible and has steady state

distributions that converge to a non-optimal solution for ¢ — 0.

4 A Counter Example

Consider the extremely simple JSP with two jobs each consisting of three operations as given in Fig.
5.

machine A machine B machine C

Figure 5: A JSP with two jobs, three machines. The values in the rounded boxes are the processing times. A solution
x defines the direction of the dashed arcs. If down-arrows are coded as 0, up-arrows as 1, solutions are 3-bit digits. The

picture shows the solution 2 = (010) in binary code.

There are eight possible solutions which are all feasible. Coding the machine precedences for each
solution in a binary fashion as indicated in Fig.5 we can calculate the longest paths and obtain the

cost function as in Fig.6.

solution no. 0 1 2 3 4 5 6 7
machine precedences || 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
costs 16 | 19.5 | 21.5 | 17.5 | 18 | 21.5 | 20.5 | 16.5

Figure 6: The costs, i.e. the length of the longest path, for each of the possible solutions.

We use the Metropolis acceptance probability and the uniform distribution on the N1-neighbours

as generating probability. In the Markov transition graph of P; in Fig.7 the solutions are the nodes,
their costs being represented by their vertical position. To each solution, all adjacent nodes are N1-
neighbours, i.e. they can be reached by reversing one critical edge. The asymmetry is obvious. Also it
can be seen that G is irreducible. All downward arcs are transitions that are accepted with probability
one as they represent an improvement. The bold arcs are transitions which lead to higher costs; their
transition probabilities are calculated from (2). We obtain a = b = exp(—3.5/t), ¢ = d = exp(—4/1).

Transitions without arcs have probability 0.

21 —+

20

18 +

17 +

Figure 7: The Markov chain transition graph for the example JSP. The transition probabilities a,b,c and d for the

upward arcs are given in the text.

We can calculate the steady state probabilities m;(0), ..., m(7) explicitely from the steady state

equations 7, P, = m; and m;1 = 1. We obtain m(z) = 7¢(x)/C; where

(frt(O), .. ,7~rt(7)) = (3¢(6 + b+ 4d + bd), 2ac(3 +b)(3 + 2d), 3acd(3 +b), 6ac(3 +b),
6ac(3 + d), 3abe(3 + d), 2ac(3 + 2b)(3 + d), 3a(6 + 4b+ d + bd))

and
Cy = 18a + 12ab + 18¢ + T2ac + 3bc + 33abc + 3ad + 3abd + 12¢d + 33acd + 3bcd + 14abed.
As limy y,oa = limy,0b = limy,oc = limy,od = 0 and limy,pc/a = limy,od/a = 0 we have
) _ Tt/a
) = I8 G
with
T 18 fi =7
im& =18 and 08 { . .
t—0 a t—=0 a 0 forx <7
Hence

limm; = (0,0,0,0,0,0,0,1)
t—0

i.e. the steady state probability converges against the one-point mass on x = 7 whereas the optimal
state * = 0 has limiting probability 0. This result is quite plausibel as Fig.7 shows that it is easy to
get into state 7 but one has to climb 4 units to leave it. State 0 can be left climbing only 3.5 units.
Note that this result also shows that the N1-neighbourhood is not weakly reversible as e.g. 7 can
be reached from state 3 at maximal costs ¢(3) = 17.5 whereas any path leading back from 7 to 3 has

to pass state 6 at costs ¢(6) = 20.5.

5 Genetic Combinations of SA

If a situation as in the counterexample occurs then increasing the number of search steps in SA will
only lead closer to the suboptimal schedule. As a heuristic countermeasure we started several SA runs
which then have the chance to get absorbed into different recurrent classes S; or at least can visit a
greater part of the solution space in the case of irreducibility of S. In particular, the combination
with genetic algorithms (GA) turned out to be very efficient in our experiments. GA break the local
search character of SA by the more ’chaotic’ crossover operation and by selection. Also it adds the
possibility for parallel computations. Our general approach here is very similar to [16]. We shall first
describe the GA framework and the crossover operator and then give some details on the SA runs.

A population in our algorithm consists of K individuals, each of which is an independent SA run
with a starting solution and the best schedule found during the run. The ’fitness’ of such an individual
is the length of its best schedule. For the starting population, the starting values of the SA runs are
chosen at random. For the production of a new generation, randomly selected pairs of individuals are
taken from the present population and their schedules are crossed in a fashion described below. The
resulting schedule is taken as starting solution to a SA run, the best solution found during the SA
run is the new ’offspring’. After enough offspring individuals have been produced the population is
reduced to its original size by selecting K individuals. We used a random selection where the selection
probability of an individuum z is proportional to max{c(z')|z' € present population } — c(z). Note
that here fitness is the length ¢(z) of a solution and has to be minimized. This scheme may either
be regarded as parallel simulated annealing with crossover or as a genetic algorithm where simulated
annealing serves as a local improvement routine.

The most important feature in this context is the crossover operator, as it must operate on the
internal representation of x and should be able to preserve good partial solution from the ’parent’
individuals. The crossover we use takes the representation of schedules as Gantt charts (cp. Fig.8),
i.e. the schedule is a matrix with a row for each machine. In each row the operations for that machine
are given in their order of increasing starting times. For the crossover we first select a random time
T between 0 and the best schedule length ¢(z;) of the first parent individual. The starting solution
z for the offspring individual is formed by taking all operations that start in z; not later than 7T in
their order from z; into . Then for each machine all operations from s not yet in z are taken in
their order from z», skipping all that are already in z.

For a formal definition of the crossover operator, let t(0o) be the earliest starting time of operation

o under parent schedule z;. For two operations 0,0’ to be processed on the same machine we define

10

machineA | 9 [6 [3[0] machineA (0] [3[9] 6]

machineB | 4 i machineB | 4 [1]
machine C i [2[5[1] 8] machine C 6] 2] [8]11]
T time T time
X %

machineA | 9| 6 [0[3]

machineB | 4 |
machine C | (5] 2 [8]11]
T time
X

Figure 8: The crossover operates on two parents schedules z; and x2 in Gantt-chart representation. It produces a new

feasible schedule x.

the order in the resulting schedule x by
(t(o) <T A t)<T A 0=y, 0’) Y
0=50 1< (t(0)>T ANtod)>T N o<yz,0)V . (5)
(t(o) <T< t(o’))

The following Theorem asserts that the new schedule z is a feasible solution.

Theorem 4

If 21,29 € S are feasible solutions then z produced by the crossover (5) is a feasible solution.

Proof : We only have to check that there can be no cycles with respect to <, (notation from
Section 2). Now assume that o1, ..., 0; is a cycle of operations such that o; = o; and 0; <, 0;41 for all

1 <4 <1 —1. Note that the pairs (0;,0;+1) are arcs with 0; < 0;41 or 0; <z 0541.

Let Jr := {o € Ol|t(o) < T} be the set of operations which start under z; not later than 7. There
are four cases to be checked. If ¢(0;) < T for all 1 < j <[then o1,...,0; is a cycle under the schedule
z1, contradicting the feasibility of z;. Similarly, ¢(0;) > T for all 1 < j <[contradicts the feasibility
of £o. Now assume that we have for some index k > 1, t(0;) < T forall 1 < j <k. If t(o;) > T for all
k < j <1 this would contradict o; = 0;. Hence there must be at least one index j > k with t(o;) > T
and t(oj11) < T. From (5) we see that then o; < 0,41, i.e. the arc (0;,0j11) must be a precedence
given by the job. But then o; must start before 0;;41 under z1, i.e. t(o;) < t(0;11), a contradiction.

Hence there can be no cycles. Il

11

There is a second variant of this operation which first takes all operations starting after T' from the
second parent and then inserts the missing operations in front in the order of the first parent. Note,
that these crossover operations are not symmetric or self-inverse and can therefore not analysed that
easily (cp. [12]).

In [14], a new type of control for the temperature parameter ¢ in the acceptance probability of the
SA was introduced (to avoid misunderstanding we use here the term ’temperature control’ instead of
the more common ’temperature schedule’). It allows to rise the temperature depending on the history
of the solution process thus enabling the process to leave local minima faster. The process will then no
longer be a Markov chain. It is shown in [14] that if the temperature changes are reasonable bounded
and have an overall tendency towards a given small temperature 99 > 0 then the process of solutions
converges in distribution to the steady state distribution 7y, (or the corresponding matrix if there is
more than one recurrent class). If the conditions of Theorem 3 hold then 7y, will be concentrated
near the optimal states, for small values of ¥ .

We shall use a particular variant of this scheme which adapts the future temperature to the cost
difference d(z,y) := c¢(z) — ¢(y) for a candidate solution y and the present solution z. Note that if
y is an improvement then d(z,y) > 0. The central part of the acceptance mechanism in (1) is the
expression d(z,y)/t which relates cost differences to temperatures. To make the two more compatible
we 'norm’ the cost differences and the temperature changes. First we observe a fixed number of sample
solutions with acceptance probability & = 1 (i.e. each solution is accepted). From this sequence we
calculate an estimate dg7 for the 97%-quantile of the absolute values |d(z,y)|. Assume that dg7 is
positive. Then one can expect that ¢(z) — ¢(y) will move in the intervall (—dg7, dg7) for a large portion
of steps. Let

; d(z,y) _ clz) —cy)

d(z,y) = =
(9) dg7 dg7

be the 'normed’ cost difference, which will mainly take on values in (—1,1), depending on the quality

of the estimate dy7. Let 99 > 0 be a small given temperature and £y > ¥y the starting temperature.
We use
to — %o

A, = o (6)

as a bound for the n—th temperature change with a constant 0.5 < v < 1. The temperature control

in the next Theorem roughly uses temperature steps A, multiplied by a?(z, Y)-

Theorem 5

Let z be the present solution in the n—th step, y a candidate solution and ¢ the present tem-

peratur. Then we define the temperature ¢’ for the next step by
t' := max {190, t — dpt- An}

where d,, 11 is given by

d(z,y) if ¢(y) < c(=),
dpi1 =14 afz,t,y)" —1—d(z,y) if c(y) > c(x) and y was accepted, (7)
—(1 + d(z, y))+ if ¢(y) > ¢(z) and y was rejected.

12

Then
lim P(X, =z) = my,(z) forallzeS.

n—oQ
The proof of this Theorem is a direct consequence of Theorems 1 and 4 in [14].

rejV_ t&n

Ao 0 do7 c(x)-c(y)
Figure 9: The new temperature value ¢’ as function of the value of d(x,y).

The heuristical motivation of the scheme (7) is the following (see also Fig. 9): the actual temper-
ature change consists of a temperature step +£A,, scaled by d,4+1 which itself is a simple function of
the normed cost difference J(m, y). If y is at least as good as z, this is considered as a success and the

temperature is decreased by

N clz) — ¢ to — 0
d($ay)An = ()’I'L7 (y) . 0d97 0.

If a candidate y with higher costs is accepted then the temperature is lowered by the (possibly

to damp the uphill-climbing. Finally, if a candidate y with higher costs is rejected, the temperature is
increased by the amount (14d(z,y))* A, > 0 (note that in this case d is negative). Here, (1+d(z,y))*

huge) amount

takes on values near 1 for c¢(y) only a little larger than ¢(z), it decreases linearly and is equal to zero
for c(y) > ¢(z) + dg7. This enables the process to leave local minima more easily.

Fig. 9 shows the behaviour of ¢’ as a function of the cost difference ¢(z) — c(y) for fixed t. If dg7 is
chosen such that a large portion of all (z,y)-pairs has |d(z,y)| < 1 then the control will move mainly
in the central part of the figure.

This temperature control applied to the JSP showed much better empirical results compared with
standard SA with fixed temperature sequences, see the computational results in [14]. Nevertheless, as
Theorem 3 does not hold for the JSP, we cannot assume that for small values of Jy the steady state
distribution my, in Theorem 5 will concentrate near the optimal states. The computational results in
the next section show that the combination of GA and SA finds the best values in most cases and

even improves some of them.

13

6 Computational Results

In the implementation of our system ’SAGen’ we used the disjunctive graph of the problem to generate
and evaluate neighbours of a solution and a Gantt-like list representation of schedules for the crossover
operation. The parameter dy; for the temperature control as in Theorem 5 and the mean cost difference
are estimated from a sample whose size depends linearly on [, the amount of unsuccessful SA steps
allowed, see below. These parameters are estimated for each new individuum after crossover and thus
are part of the object ’individuum’ in an object-oriented sense. The starting temperature ¢y and the
minimal temperature 9y are chosen such that given fractions of the mean cost difference seen in the

sample would be accepted, see [14] for details.

Results with SAGen Aarts et al.
optimal value || best average best average

problem | jobs x resp. lower/ || value average | mean rel.| cpy value CPU
instance | mach. upper bound || found value error secs found secs
law16 10x10 945 945 945.2 0.000 38.8 969 88.2
law19 10x10 842 842 844.0 0.002 34.6 854.6 93.8
law21 15%x10 1046 1047 1051.0 0.005 549.2 1078 243.4
law22 15x10 927 931 932.4 0.006 452.8 944 254.2
law24 15x10 935 938 940.4 0.006 569.6 960 234.8
law25 15%x10 977 977 979.0 0.002 644.4 1003 254.8
law27 20x10 1235 1236 1244.8 0.008 3650.6 1275 492.0
law29 20x10 1142 / 1153 1167 1169.2 0.024 4494.0 1225 471.0
law36 15x15 1268 1268 1269.8 0.001 4655.2 1307 602.2
law37 15x15 1397 1401 1412.8 0.011 41444 1440 636.2
law38 15x15 1196 1201 1202.4 0.005 5049.4 1235 635.0
law40 15x15 1222 1226 1228.6 0.005 4544.0 1254 596.8
abz07 20x15 656 658 659.6 0.005 28487.4 667 -
abz08 20x15 645 / 669 670 670.4 0.039 28194.6 670 -
abz09 20x15 661 / 679 683 685.6 0.037 26202.0 691 -

Table 1: Results for some of the hard problems from the JSPlib. For our method SAGen averages are from 5 runs.

The results "Aarts et al.” are from [1]

For the starting solutions we examined two different methods. The first simply chooses an order
of the jobs and then processes the operations at each machine in the order of the corresponding jobs.
This produces very bad starting solutions, still the overall results are only slightly worse than from the
second method taken from [3]. Here, the operations are given a random order. Then, on the places
occupied by operations belonging to one job, these operations are ordered according to the required
precedence of the job. For the time-consuming reevaluation of longest paths after a critical edge has
been reversed we used an algorithm that visits only those nodes that are affected, i.e. those that lie
"behind’ the new edge in topological order.

As a stopping criterion for the local SA improvement runs we used the number [of neighbour
evaluations without improvement of the best value found so far in that run. The whole algorithm
stops if for a given number g of generations (i.e. production-reduction cycles of the GA) there has
been no improvement of the best solution found so far.

We applied the procedure SAGen to the set of difficult problems from the test library JSPlib 2.

obtainable via ftp from mscmga.ms.ic.ac.uk

14

The results are given in Table 1. These are average results from five runs with a population size
10. The algorithm stopped after g = 2 consecutive generations without improvement. The local SA
improvement stopped after a number of trials without improvement ranging from [= 10,000 (for
law16) to [= 2,000,000 (for abz0x). Due to the stopping criterion, the best solution were found after
about 2/3 of the overall time given in the table. The times are for a Pentium 120 for the law-problems
and a Pentium 166 for the abz-problems. The last two columns in Table 1 give the best average results
from [1]. They compared different multi-start, SA and genetic algorithms. In contrast to their study
we adapted the stopping criterion to the complexity of the problem which led to CPU times which
are much larger in our case. On the other hand, in [1] older machines (VAX 875) were used making
direct comparisons difficult. For the last three ’abz’-problems the results in [1] were obtained with run
times up to 15h (compared with 8h in our case). Their results of these instances are the best from a

comparison between SA, GA, tabu search and JSP-specific heuristics.

problem jobs optimal value best average mean average average
instance x mach. resp. lower / value best rel. CPU no. of
upper bound found value error secs trials

swv01 20x10 1392 / 1418 1427 1428.0 0.026 47828 312320976
swv02 20x10 1475 1487 1489.7 0.010 43089 282676997
swv03 20x10 1369 / 1398 1422 1427.7 0.043 40684 250332641
swv04 20x10 1450 / 1483 1487 1490.3 0.028 44257 276227664
swv0b 20x10 1421 / 1434 1449 1453.2 0.023 40045 254417756
swv06 20x15 1591 / 1696 1697 1703.0 0.070 112647 377949381
swv07 20x 15 1446 / 1620 1627 1630.0 0.127 97504 337848245
swv08 20x15 1640 / 1770 1773 1776.5 0.083 56781 244833220
swv09 20x15 1604 / 1663 1665 1682.5 0.049 24474 109808770
swv10 20x 15 1631 / 1773 1791 1794.5 0.100 44467 148570911
swvll 50x10 2983 / 3005 3075 3081.5 0.033 117454 247525101
swv12 50x10 2972 / 3038 3108 3115.0 0.048 124549 258701571
swvl3 50x 10 3104 / 3146 3177 3178.5 0.024 92756 222799699
swvl4 50x10 2968 3010 3013.5 0.015 104088 247336666
swvlb 50x10 2885 / 2940 3004 3004.0 0.041 161365 375564078

Table 2: Results from three runs for the difficult swv-problems from the JSPlib

Table 2 shows the best solutions found for the swv - problems from the JSPlib. These are best
results from 2 - 3 runs. The algorithm used population size 20 and stopped after two generations
without improvement. The local SA was allowed to spend 2 million trials without improvement before
stopping. This led to CPU times of up to 44 h on Pentium 120/166.

The upper and lower bounds in Table 1 and 2 are taken from the JSPlib. They are obtained
by different authors mostly with exact, highly JSP-specific methods. Only part of these results are
published in detail, so that the CPU times are not all available.

The results show that if one is willing to spend enough time then our method 'SAGen’ constantly
finds very good solutions. When comparing its results to other methods, one has to keep in mind
that SAGen is a very general method. It needs less problem specific knowledge than many other, in
particular exact methods. Therefore, it is easier to set up and it can be applied to completely different
problems with little adaptation. The price for this generality is a larger running time than is needed

by many of the JSP-specific algorithms.

15

1000

1600

T T T T T T
mean best value — mean CPU secs —
mean error Fo— mean no. of trials ----

990 [1400

980 [
1200

970 |
1000
960 [

950 [

940 |

930 [

920 L L L L L L L L L L L L L 200 L L L L L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 10: Mean best values, mean CPU times and total number of trials for the different parameter
settings given in Table 3.

No. | o|1]2|3]4|5] 6] 7] 8] 9] 10] 11] 12] 13
populatipn
size 10000{500013333/1000| 500 | 333| 100 | 50 | 33 10 5 3 10 1
no. of
generations
without | 1 2 3 1 2 3 1 2 3 1 2 3 0 0

improvement

no. off
SA

trials
without | 100 | 100| 100 {1000 100q 1000/10000/ 10000/ 10000 100000\100000\10000(1 20000q 2000000

improvement

Table 3: The number of the different parameter settings is used as z-value in Fig. 10.

Finally we compared the results of mt10, a 10 x 10 - problem for different population sizes. We
chose the stopping criterion such that the amount of local improvement steps after the best solution
was found was about constant for all settings. That means that the product p * g * [is constant
where p is the population size. In the following two figures z-values correspond to different parameter
settings as explained in Table 3. The runs for £ = 12 are the best results from 10 independent SA-runs
that were stopped after I = 200000 trials without improvement (i.e. multi-start without crossover).
z = 13 is from a single SA run that was allowed to spend [= 2 million unsuccessful trials before it was
stopped. Fig. 7 shows that the best and most stable behaviour was observed for a small population
with large local improvement (e.g. z = 8,z = 10). Also these settings were the fastest. The results
are averages from four runs.

Though these values will differ with the size of the problem instances, it underlines our viewpoint
that our algorithm is essentially a parallelized Simulated Annealing procedure that is allowed to

exchange information via crossover now and then.

7 Conclusions

Convergence to an optimal solution is an important property for iterative search methods. Even if in

practical implementations only a relatively small amount of solutions is visited and the best solution is

16

returned, an overall convergence of the method indicates that the results will improve when additional
effort (computation time) is spent. If there is no convergence or convergence to suboptimal solutions
as in the SA applied to the JSP, additional trials may lead to worse solutions.

As in such situations one cannot be sure to encounter the optimal solution during one run, a
'multistart’ approach where SA starts several times from different initial solutions could improve the
performance. A more sophisticated way to do this in parallel is the genetic algorithm. Here, several
SA runs try to ’share’ their findings by crossover. GA (in particular crossover operations) add a more
global look to the local character of SA.

This method of combinig SA and GA could be refined by a more detailed statistical analysis of
the cost landscape before and during the optimization. This would allow to adapt the temperature
control and the GA operations more closely to the course of the optimization (see [23] where these ideas
are applied to a multicriterial GA). Also one could add elements from tabu search to avoid cycling
(though this does not seem to be a major problem here due to the asymmetry of the neighbourhoods).
Parallelizing the implementation would allow larger populations to search a larger part of the solution
space.

Presently, we are applying SAGen to the quadratic assignment problem, which in its standard

form has symmetric neighbourhoods, but does not allow a natural crossover.

References

[1] AArTs, E. H. L., P. J. M. VAN LAARHOVEN, J. K. LENSTRA AND N. L. J. ULDER (1994),
A Computational Study of Local Search Algorithms for Job Shop Scheduling. ORSA Journal on
Computing 6, 118-125

[2] ANILY, S. AND A. FEDERGRUEN (1987), Simulated Annealing Methods with General Acceptance
Probabilities. J. Appl. Prob. 24, 657-667 .

[3] BIERWIRTH, C.(1995), A generalized permutation approach to job shop scheduling with genetic
algorithms. OR Spektrum 17, 87-92.

[4] BLAZEWICZ, J., W. DOMSCHKE AND E. PESCH(1996), The job shop scheduling problem : Con-

ventional and new solution techniques. Furop. J. of Operations Research 93 1 -33.
[6] BRUCKER, P. (1995), Scheduling Algorithms. Springer Verlag, Berlin.

[6] CERNY, V. (1985), Thermodynamical Approach to the Travelling Salesman Problem: An Efficient
Simulation Algorithm. JOTA 45, 41-51 .

[7] FAIGLE, U. AND W. KERN(1989), Note on the Convergence of Simulated Annealing Algorithms.
SIAM J. of Control and Optimization 29, 153-159.

[8] HAJEK, B. (1988), Cooling Schedules for Optimal Annealing. Math. Op. Res. 13, 311-329.

17

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Holland, J. H.(1975), Adaptation in Natural and Artificial Systems, MIT Press, Ann Arbor.

KARLIN, S. AND H. M. TAYLOR (1975), A First Course in Stochastic Processes. 2end edition,

Academic Press.

KIRKPATRICK, S. AND C.D. JR. GELATT (1983), Optimization by Simulated Annealing. Science
220, No. 4598, 671-680.

KoLoNKO, M. (1995), A Generalized Crossover Operation for Genetic Algorithms. Complez
Systems 9, 177-191.

KoLoNKO, M. (1995), A Piecewise Markovian Model for Simulated Annealing with Stochastic
Cooling Schedules. J. Appl. Prob.32, 649-658.

KOLONKO, M. AND M.T. TRAN (1997), Convergence of Simulated Annealing with Feedback
Temperature Schedules. Probability in the Engin. and Informational Sciences 11, 279-304.

LunDpy, M. AND A. MEES (1986), Convergence of an Annealing Algorithm. Math. Progr. 34,
111-124 .

ManFOUD, S. W. AND D.E. GOLDBERG (1992), . A genetic algorithm for parallel simulated

annealing. Parallel Problem Solving from Nature 2, R. Méanner and B. Manderick (Eds.), Elsevier
Science Publishers B.V., 301 - 310.

MATTFELD, D. (1996), Evolutionary Search and the Job Shop Physica Verlag, Heidelberg.

MITRA, D., F. ROMEO AND A. SANGIOVANNI-VINCENTELLI (1986), Convergence and Finite-
Time Behaviour of Simulated Annealing. Adv. Appl. Prob. 18, 747 — 771.

VAESSENS, R. J. M., E. H. L. AARTS AND J. K. LENSTRA (1994), Job Shop Scheduling by
Local Search. Memorandum COSOR 94-05, Eindhoven University of Technology, February 199/.

VAN LAARHOVEN, P.J.M. AND E.H.L. AARTS (1987), Simulated Annealing: Theory and Appli-
cations. D. Reidel Publ. Comp., Dordrecht NL.

VAN LAARHOVEN, P.J.M. (1988), Theoretical and computational aspects of simulated annealing
CWI Tract 51, Stichting Mathematisch Centrum, Amsterdam.

VAN LAARHOVEN, P. J. M., E. H. L. AARTS AND J. K. LENSTRA (1992), Job Shop Scheduling
by Simulated Annealing. Operations Research 40, 113 — 125.

VOGET, S. AND M. KOLONKO (1997): Multidimensional Optimization Using Fuzzy Genetic

Algorithms To appear in Journal of Heuristics.

18

