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Abstract—The discrete cross entropy optimization algorithm
iteratively samples solutions according to a probability density
on the solution space. The density is adapted to the good solutions
observed in the present sample before producing the next sample.
The adaptation is controlled by a so-called smoothing parameter.
We generalize this model by introducing a flexible concept of
feasibility and desirability into the sampling process. In this
way, our model covers several other optimization procedures,
in particular the ant based algorithms.

The focus of this paper is on some theoretical properties of
these algorithms. We examine the first hitting time τ of an
optimal solution and give conditions on the smoothing parameter
for τ to be finite with probability one. For a simple test
case, we show that runtime can be polynomially bounded in
the problem size with a probability converging to 1. We then
investigate the convergence of the underlying density and of
the sampling process. We show in particular, that a constant
smoothing parameter, as it is often used, makes the sample
process converge in finite time, freezing the optimization at
a single solution which need not be optimal. Moreover, we
define a smoothing sequence that makes the density converge
without freezing the sample process and that still guarantees the
reachability of optimal solutions in finite time. This settles an
open question from literature.

Index Terms—Evolutionary computation, cross entropy
optimization, ant colony optimization, heuristic optimiza-
tion, discrete optimization, model based optimization.

I. INTRODUCTION

CROSS entropy (CE) optimization is a widely used tool for
heuristic optimization in particular for discrete problems,

see [1] for an overview. As was noted before (see e.g. [2]), it
also has much in common with ant algorithms (ACOs).

In this paper we use a generalized version of the CE
algorithm that includes most of the features of ACOs. We con-
centrate on theoretical properties of the underlying processes,
that hold under very general conditions and therefore apply to
all types of algorithms covered by our model. The paper is
inspired by [3] where for a particular CE model convergence
properties were proven.

In a CE model, we are considering a cost function f on a
finite set S of solutions. A solution is a tuple of fixed length.
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We use a probability distribution or density on S as a model for
producing good solutions. This density is iteratively adapted
with the goal to give an increasing weight to optimal solutions.
Roughly, the method proceeds in two steps:

Sampling: We take a sample of fixed size N from S,
based on the present distribution Πt, starting with a given
density Π0 for t = 0 (e.g. the uniform distribution).

Adaptation: We evaluate the solutions in the sample with
the cost function f and determine the relative frequencies
of components in the best solutions. We define Πt+1

by adapting Πt to these frequencies. Here, a so-called
smoothing parameter %t controls the relative weight of
the sample during the adaptation process.

In this way, Πt is expected to give increasing weight to the
better part of the solution space.

In [3], the impact of the smoothing parameter on the con-
vergence of the process (Πt)t≥0 is investigated. The authors
give conditions on %t under which an optimal solution is
sampled with probability one after finitely many iterations
(reachability). In particular, they found that for a constant
smoothing parameter %t ≡ %, the distribution Πt will converge
to a one point mass (convergence of density), but that one
has to make % arbitrarily small to increase the probability of
reachability. Solutions are restricted to 0-1-tuples in [3].

We extend these results in several directions. We allow
solutions to be strings of arbitrary elements and do not require
the optimal solution to be unique. Most importantly, we
introduce a notion of feasibility and desirability to restrict
the set of solutions and to bias the sampling. The samples
in the Sampling step above are actually drawn according to a
mixture of the present distribution Πt and a given feasibility
measure. This also allows to include a greedy aspect into the
construction of the solutions, as it is common in ACOs under
the name of ‘visibility’. However, this additional feature makes
the mathematical model much more complex compared to that
in [3].

Still, we are able to show that the results from [3] hold
for this generalized model. We investigate τ , the number of
iterations until an optimal solution is sampled for the first time.
We show that, if the smoothing parameter %t is a constant, then
τ has a strictly positive probability to be infinite, and therefore
the expected runtime is ∞. To get more insight into the
finite time behavior of the algorithm, we consider a standard
test problem (LeadingOne, see [4]). We show that for this
problem, even if %t is constant, the runtime, i.e. the number
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of solutions sampled until an optimal one is found, is bounded
by a polynomial in the problem size with a probability that is
converging fast against one.

In genetic algorithms, the phenomenon of genetic drift is
well-known, see e.g. [5], it describes the loss of all variation in
the solutions. A similar thing may also happen in our model.
We show that, for smoothing parameters %t bounded away
from 0, the distribution Πt as well as the sampled solutions
converge. Thus, for fixed %t ≡ % > 0, the sample process is
absorbed into a fixed point after finitely many iterations, and
this fix point need not be an optimal solution. This may be
the theoretical proof for the stagnation in sampling that has
been reported in [6], where CE was applied to a Maximal Cut
problem.

In CE, it is of great importance whether almost sure reach-
ability of optimal solutions and convergence of the underlying
density are compatible. This important question remained open
in [3]. We solve this question by giving smoothing sequences
that show both, reachability of the optimal solution and
convergence of the density with probability one. In this sense,
these sequences balance what is sometimes called exploitation
and exploration. However, at present we are not able to show
that the limiting density is concentrated on optimal solutions.
Our result also shows the difference between the two types of
convergence: convergence of the density does not necessarily
mean that the sample process is absorbed after finitely many
iterations.

Applied to ACOs, our results complement the convergence
results of [7] and [8] to the case where the update of
pheromones only uses current solutions. They also show that,
with this update, ACOs will end in suboptimal solutions with
a positive probability if a constant evaporation rate is used.
See Section IV for details on ACOs.

The paper starts with an exact definition of the encoding
of the solutions, the CE algorithm and the stochastic model
describing its evolution in Section II. In Section III we state
the main results and discuss their implications. In Section IV,
we discuss some extensions of our model and how it applies to
the ACO algorithms. The very complex and technical proofs
together with some auxiliary results are collected in Section
V. Section VI contains a conclusion and an outlook on further
research.

II. THE MATHEMATICAL MODEL

A. Problem Encoding

We are considering a problem of discrete optimization with
a finite set of feasible solutions S and a cost function f : S →
R. Let S∗ := {s ∈ S | f(s) = mins′∈S f(s′)} be the set
of optimal solutions. To exclude trivial cases, we assume that
|S| > 1 and that S∗ 6= S.

We assume further that S has a particular structure: each
feasible solution s ∈ S can be written as a finite string
s = (s1, . . . , sL) of symbols from a finite alphabet A :=
{a1, . . . , aK}. L is the fixed length of the strings.

Often, CE models (e.g. in [3]) use an unconstrained solution
space S = AL. We generalize this model introducing a
feasibility function Ci(y, a) that assigns a weight to each

a ∈ A for every possible partial solution y of length i. Thus,
if Ci(y, a) = 0, the partial solution y cannot be continued by
adding the symbol a. The larger the value of Ci(y, a), the more
desirable it seems, from a greedy point of view, to continue
with symbol a. We assume that these values are normed, an
example is given after the formal definition below.

Our CE method, described in Subsection II-B below, con-
structs solution strings stepwise by adding new feasible sym-
bols to the right end of a partial solution until it is complete.
More formally, we define the set Ri of feasible partial
solutions of length i recursively as follows: Let � denote the
empty string over A. We assume that we are given

C0(�, ·) : A → [0, 1],
∑
a∈A

C0(�, a) = 1,

expressing the feasibility or desirability of a symbol at the first
position of a solution. We then define

R1 := {a ∈ A | C0(�, a) > 0}

as the set of feasible partial solutions of length 1. Assume now
that we have defined Ri for some i ∈ {0, . . . , L− 1} and that
we are given

Ci(y, ·) : A → [0, 1],
∑
a∈A

Ci(y, a) = 1 for each y ∈ Ri.

Let (y, a) denote the concatenation of symbol a ∈ A to the
right end of the partial solution (string of symbols) y ∈ Ri.
Then we define

Ri+1 :=
{

(y, a) | y ∈ Ri, a ∈ A, Ci(y, a) > 0
}

and put S := RL. For y ∈ Ri, i ∈ {0, . . . , L− 1}, let

Ci(y) := {a ∈ A | Ci(y, a) > 0}

be the support of Ci(y, ·). We use the abbreviation I :=
{0, . . . , L− 1} in the sequel.

As an example, we look at a Traveling Salesman Problem
(TSP), where the aim is to find a tour of minimal length
through K cities {a1, . . . , aK}. Here, C0(�, a) = 0 could be
used to prevent tours from starting in city a. If y ∈ Ri is a
partial tour of length i, then Ci(y) contains all cities that could
be visited next. Ci(y, a) would be zero if a has been visited
before or cannot be reached from y. 0 < Ci(y, a) could be
chosen as the normed distance from (the end of) y to a. Here,
the distance has to be normed by the sum of distances from
y to all a′ ∈ Ci(y).

This feasibility concept allows to include the case where
there is only a set Ci(y) ⊂ A of feasible continuations of
the partial solution y ∈ Ri and no desirability information. In
this case, Ci(y, ·) is chosen to be the uniform distribution on
Ci(y). In particular, if there are no constraints at all, we have
Ci(·) ≡ A for all i ∈ {0, . . . , L− 1} and put

Ci(y, a) ≡ 1

|A|
, for all y ∈ Ri, a ∈ A. (II.1)

We shall refer to (II.1) as the ‘unrestricted case’.
Although the construction of S = RL seems to be very

particular, it imposes no restrictions on the optimization prob-
lems. Formally, we can include any finite set S of feasible
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solutions into our model by choosing A := S,L := 1 and
C0(�, s) > 0 for all s ∈ S. Thus we can force any problem
into our framework, but the efficiency of the method (which
is not discussed in this paper) may not be high. It is more
reasonable to use our model in cases where |A| � |S|.

B. The Generalized CE Algorithm
The cross entropy algorithm essentially evolves a distribu-

tion on the set S = RL of all feasible solutions with the aim
to give a high probability to the optimal solutions from S∗.

Let P(A) denote the set of all probability measures on the
set A. Then p ∈ P(A)L, p = (p(1), . . . ,p(L)) is a product
probability measure on AL, that describes the selection of
a solution s = (s1, . . . , sL) ∈ AL, where the L symbols
s1, . . . , sL are chosen independently of each other. Here,
p(i) =

(
p(a; i)

)
a∈A ∈ P(A) is the distribution for the symbol

on the i-th position of the string.
Our CE algorithm takes the following items as input:
• the feasibility distributions Ci(·, ·), i ∈ I;

• a sequence of smoothing parameters (%t)t≥1 with %t ∈
(0, 1) ;
• a sample size N ∈ N and a subsample size Nb ≤ N ;

• a starting distribution p0 ∈ P(A)L.
Starting: For time-step t = 0, put p := p0, then run

iteratively through the following steps for t = 1, 2, . . .
until some stopping criterion is fulfilled.

Sampling: If the present distribution is p ∈ P(A)L, a
solution s = (s1, . . . , sL) ∈ S is drawn according to the
probability

Qp(s) := Qp(s1; 1, �) ·
L∏
i=2

Qp(si; i, (s1, . . . , si−1)),

(II.2)
where

Qp(a; i, y) :=
p(a, i)Ci−1(y, a)∑

a′∈A p(a′, i)Ci−1(y, a′)
(II.3)

is the probability that the feasible symbol a ∈ A is added
at position i to the feasible partial solution y ∈ Ri−1. We
use the convention 0

0 = 0 throughout this paper.
In this way, the CE algorithm draws N solutions
s(1), . . . , s(N) independently and identically distributed
(i.i.d.).

Evaluation: This sample x := (s(1), . . . , s(N)) is ordered
according to its cost values

f(s(n1)) ≤ f(s(n2)) ≤ · · · ≤ f(s(nN ))

and the better Nb solutions are selected: Nb :=
{s(n1), s(n2), . . . , s(nNb )}. Then we define the relative
frequency of symbol a at position i ∈ {1, . . . , L} in the
selected part of the sample:

w(a; i,x) :=
1

Nb

∑
s∈Nb

1{a}(si) (II.4)

and collect these frequencies for all a ∈ A to form
w(i,x) :=

(
w(a; i,x)

)
a∈A and

w(x) :=
(
w(1,x), . . . , w(L,x)

)
. (II.5)

Then w(x) is a product probability measure from P(A)L,
that gives the relative frequencies of symbols in the better
part of the sample x drawn with Qp.

Update: We update the present distribution p as a convex
combination of p and the relative frequencies w(x):

p := (1− %t+1)p + %t+1w(x). (II.6)

Next, the counter t is increased by 1 and the step
‘Sampling’ is performed with the new p.

Some extensions to this model and a comparison to other
approaches can be found in Section IV below.

C. The Solution Process

Applying the above algorithm iteratively results in a se-
quence of probability measures and samples that form a
stochastic process (

Πt;Xt

)
t=0,1,...

where Πt =
(
Πt(1), . . . ,Πt(L)

)
is a random variable taking

on values in P(A)L, that describes the distribution underlying
the sampling in the t-th iteration. Πt is called the density
of the algorithm with Π0 = p0. Xt takes on values in
SN and is the sample of N solutions produced in the t-th
’Sampling’ step of the algorithm, using QΠt

as defined in
(II.2). In the sequel, we put Xt =

(
X

(1)
t , . . . ,X

(N)
t

)
and

X
(n)
t =

(
X

(n)
t (1), . . . ,X

(n)
t (L)

)
. Then X

(n)
t (i) denotes the

symbol at position i, 1 ≤ i ≤ L, drawn in the n-th solution
in iteration t. Similarly, X

(n)
t (1, . . . , i) denotes the partial

solution up to the i-th position in that solution.
The process (Πt,Xt)t≥0 is well defined on a joint proba-

bility space
(
Ω,P

)
. It can be shown, using (II.2) and (II.6),

that
(
Πt, Xt

)
t≥0 as well as the marginal process

(
Πt

)
t≥0

are Markov processes.
Due to the deterministic nature of the update mechanism,

we may also write Πt+1 = (1 − %t+1)Πt + %t+1w(Xt) on
a vector level and on the more detailed level

Πt+1(a ; i)

= (1− %t+1)Πt(a ; i) + %t+1w(a ; i,Xt)
(II.7)

for each a ∈ A, i = 1, . . . , L. We shall refer to (II.7) as the
‘basic recursion’, most of our results are based on it.

D. General assumptions

Throughout this paper we assume that the starting distri-
bution Π0 = p0 is given such that any item from A has a
positive probability at any position i :

p0(a; i) > 0 for all a ∈ A, i = 1, . . . , L. (II.8)

Also, without loss in generality we may assume that there are
at least two solutions

s = (s1, . . . , sL), s′ = (s′1, . . . , s
′
L) with s1 6= s′1. (II.9)

Otherwise, all solutions would start with the same symbol,
which could then be dropped from the encoding of the
solutions.
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III. MAIN RESULTS

In this Section we collect the main results of this paper and
discuss their meaning. The quite complicated proofs are given
in Section V.

A. Results on the Reachability of Optimal Solutions

Let Xt := {X(1)
t , . . . ,X

(N)
t } be the set of solutions

sampled in the t-th iteration, then

τ := min{t ≥ 0 | Xt ∩ S∗ 6= ∅} (III.1)

denotes the first iteration, in which an optimal solution is sam-
pled. We now investigate whether we can guarantee to reach
an optimal solution in finite time, i.e. whether P(τ <∞) = 1.

Theorem 1 shows, that the results of [3] hold in our more
general model.

Theorem 1. a) If
∑∞
t=1

∏t
m=1(1− %m)L =∞,

then P(τ <∞) = 1.
b) If P(τ <∞) = 1, then

∑∞
t=1

∏t
m=1(1− %m) =∞.

c) If %t ≡ % > 0 is a constant, then we have P(τ <∞) <
1, but P(τ <∞)→ 1, if either N →∞ or %→ 0.

The proof of this Theorem along the lines of [3] is given
in Section V-B below. Theorem 1 b) shows in particular that
for a constant smoothing parameter, i.e. %t ≡ %, it cannot be
guaranteed that the optimal solution is reached in finite time, as
we have

∑∞
t=1

∏t
m=1(1− %) = 1/%− 1 <∞. But then also

the expected runtime, i.e. the expected number of solutions
sampled before an optimal solution is reached, will be infinite
for arbitrary optimization problems.

For a particular problem however, namely the LeadingOne
problem, see e.g. [4], we are able to show that the runtime
is bounded by a polynomial in the problem size with a
probability converging to 1, even if %t is constant. In the
LeadingOne problem we consider the unrestricted case with
A = {0, 1}, S = {0, 1}L and

f(s) := L−
L∑
l=1

l∏
i=1

si for s = (s1, . . . , sL). (III.2)

Minimizing f(s) then means to maximize the number of
consecutive 1s counted from the left of the solution.

Theorem 2 extends the runtime results of [4], who consider a
special case of the CE algorithm with %t ≡ 1 on a LeadingOne
problem. The Theorem essentially states that if we take %t ≡
% ∈ (0, 1) and let the sample size grow as N = L2+ε for some
ε > 0, then we can reach the optimal solution in L iterations
with a probability converging to 1, i.e. the runtime is O(L3+ε)
in a stochastic sense.

Theorem 2. Let %t ≡ %, sample size N = L2+ε for some ε >
0 and Nb = bβNc for some 0 < β < 1

3e

∏∞
m=1

(
1−(1−%)m

)
.

Let Π0(1, i) ≡ 1
2 , i.e. we start with the uniform distribution.

Then for a LeadingOne problem, defined in (III.2), we have
P(τ < L)→ 1 as L→∞.

For a proof of Theorem 2, see Subsection V-C below.
Theorem 1 b) and the lower bound in Lemma 10 b) below

show that a constant smoothing parameter reduces the global

‘exploration’ of the search space. Theorem 2 however shows
that we can compensate for that by increasing the local
‘exploitation’ in terms of a growing sample size, at least in
specific problems.

B. Results on Convergence of Density and Samples

An important question, also addressed in [3], is whether
the density Πt will converge to a density concentrated on one
point, and whether this point is an optimal solution. For the
unrestricted case, [3] showed that the algorithm with %t ≡ %
has a convergent density in the following sense:

Definition 3. We say that the algorithm has convergent den-
sities, if

(
Πt

)
t≥0 converges almost surely against a product

of one-point measures, i.e.

P
(
∀i = 1, . . . , L ∀a ∈ A lim

t→∞
Πt(a ; i) ∈ {0, 1}

)
= 1.

A convergent density means that asymptotically, we only
sample one identical solution. But this may also happen after
finitely many iterations:

Definition 4. We say that the algorithm has convergent
samples, if

(
Xt

)
t≥0 converges against some fixed sample

x = (s, . . . , s) ∈ SN of identical solutions, almost surely,
i.e. if the following event has probability one:

∃s ∈ S ∃T ∈ N ∀m ≥ 1 ∀n = 1, . . . , N X
(n)
T+m = s.

In this case, the sampling freezes to a single solution after
the finite random time T and no more progress is possible
after that time. Theorem 5 shows that this does happen, if a
constant smoothing parameter is used.

Theorem 5. a) If %t ≥ % for some % > 0, then the
algorithm has convergent samples.

b) For |S∗| = 1, convergent samples imply P(τ <∞) < 1,
hence convergence of samples and P(τ < ∞) = 1 are
mutually exclusive in this case.

c) Convergent samples imply a convergent density.
d) If the density converges, then

∑∞
t=1 %t =∞.

The quite complex proof of Theorem 5 is given in Section
V-D below. Theorem 5 a) shows that the phenomenon of
‘genetic drift’ may also occur in this generalized CE provided
a constant smoothing parameter is employed. From Theorem
5 b), we see that in this case an optimal solution may not be
found if it is unique.

C. Reachability and Convergent Density are Compatible

In [3], the question was raised whether convergence of
densities and reachability of optimal solutions are mutually
exclusive, and this remained an open question. In Theorem 5,
a partial answer was given with respect to the stronger concept
of convergent samples.

At least for the unrestricted case, we can give a complete
answer: there are smoothing sequences such that the algorithm
has P(τ <∞) = 1, it has convergent densities but no conver-
gent samples. This also shows that the opposite direction in
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Theorem 5 c) does not hold in general, densities may converge
without freezing the samples in finite time.

Theorem 6. In the unrestricted case the following holds:
Assume that % ∈ (0, 1) and ck ∈ N for k = 0, 1, . . . , with
c0 = 1, are chosen such that

∞∑
k=1

ck(1− %)kL =∞.

Define ek :=
∑k
i=1 ci−1, k ≥ 1, and let xk ∈ (0, 1) be any

sequence such that
∑∞
k=1 xk < ∞. We may now define a

smoothing sequence

%t :=


% if t = ek for some k ≥ 1

1− (1− xk)
1

ck−1 if ek < t < ek+1 for
some k ≥ 1

(III.3)
for t ≥ 1. Then the algorithm has convergent densities, it has
P(τ <∞) = 1, and its samples do not converge.

The proof of Theorem 6 is again given in Section V-E.
As an example for the values in Theorem 6, take an arbitrary

% > 0, then one may choose ck = (1− %)−kL to obtain
∞∑
k=1

ck(1− %)kL =

∞∑
k=1

1 =∞.

For % < 1/2, one could, for example, use ck := 2kL.
Theorem 6 shows that a global exploration of the search

space (that implies reachability) and the ability for thorough
local search, that includes some kind of convergence, can be
balanced in this type of algorithm. It also shows that the
two types of convergence are different, convergence in the
continuous space of densities does not imply convergence in
the finite space of samples. We must admit, however, that we
are currently not able to give a smoothing sequence under
which the limiting density is concentrated on some optimal
solution.

IV. EXTENSIONS AND COMPARISON TO ACOS

The evaluation step in (II.4) simply calculates the relative
frequencies in the better part of the sample. A thorough
inspection of the proofs below shows that the results of the
above Theorems (except Theorem 2) still hold, if we replace
the relative frequencies w(a; i,x) by some other measure
0 ≤ w̃(a; i,x) ≤ 1 not depending on t with the following
properties:

(i)
∑
a∈A w̃(a; i,x) = 1, i.e. w̃(·; i,x) is a probability

measure on A;
(ii) w̃(a; i,x) = 1 if all solutions in the sample x have

symbol a at their i−th position;
(iii) w̃(a; i,x) = 0 if none of the solutions in the sample x

has symbol a at its i−th position.
For example, w̃ could be the relative frequencies of a randomly
selected subset N of x, or the weighted relative frequencies
where the weights reflect the cost f(s) of the solution as in

w̃(a; i,x) :=

∑
s∈N 1{a}(si)g(f(s))∑

s∈N g(f(s))
, (IV.1)

here g is some decreasing function. w̃ may even include
some kind of memory, as long as properties (i)-(iii) hold. In
the proofs of Section V below, we will stick to the original
frequency model as used in [3].

With these extensions, our model covers many heuristic
optimization algorithms of the model-based type. Therefore
the results given above will apply to all these algorithms.

In particular, they apply to ACO algorithms as described
in [9] and [10]. Here solutions are maximal loop-free paths
in a so-called construction graph. The arcs (k, l) of the path
are selected according to ‘pheromones’ τkl and a ‘visibil-
ity’ ηkl on the arcs. Taking arcs as symbols a := (k, l),
pheromones can be expressed by the density in our model,
and the visibility together with the loop-freeness can go into
our feasibility measure Ci(y, a). The evaporation rate for the
update of pheromones is identical to the smoothing parameter,
hence solutions in our CE model are sampled with the same
probability as they are constructed by ants, if we choose
(IV.1) as evaluation of the solutions observed. Note that our
model requires density and feasibility to be normed probability
measures, but this does not affect the sampling probabilities
as given, for example, by [9].

Convergence results of ACOs can be found in [10], [7] and
[8]. They concentrate on ACOs with an update of pheromones
that only uses the best solution found so far and restricted
pheromone values in [7], whereas our model has no restrictions
on the density and uses the present sample for update.

With these differences, our results on reachability comple-
ment those found in [10] and [8]. In particular, the assumptions
made in [7] fulfill the sufficient condition of reachability in
Theorem 1 a). The results on absorption for constant evapo-
ration rate and the possible balancing in Theorems 5 and 6
also carry over to ACOs. Our runtime result in Theorem 2
complements findings in [11], [12] and [13], who inspect the
runtime of ACOs with restricted pheromone values (max-min
ant system) on the so-called OneMax problem.

Using best-so-far update, as in the ACO models cited above,
introduces a monotonicity that allows to show convergence
to an optimal solution once it has been sampled, see [7].
Currently, we are not able to show such a result for our
algorithm.

V. PROOFS OF THE THEOREMS

A. Some Auxiliary Results

We start with the basic recursion in (II.7), which is crucial
for our work. For a fixed pair (a; i), this recursion fulfills the
condition (V.1) of the following Lemma 7, and therefore the
conclusions (V.2) - (V.4) hold. This will be used throughout
this paper. We assume as usual

∏k
i=m · · · ≡ 1 for m > k.

Lemma 7. Let 0 < rt < 1 for t = 1, 2, . . ..

a)
∞∑
t=1

rt =∞ ⇐⇒
∞∏
t=1

(1− rt) = 0

⇐⇒
∞∏
t=1

(1− crt) = 0 for any 0 < c < 1.
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b)
t∑

m=1

rm

t∏
i=m+1

(1− ri) = 1−
t∏

m=1

(1− rm)

for any t ≥ 1.
c) For a given sequence wt ∈ [0, 1], t = 0, 1, . . . , and q0 ∈

(0, 1), the recursion

qt+1 = (1− rt+1)qt + rt+1wt, t ≥ 0, (V.1)

has the unique solution

qt = q0

t∏
m=1

(1− rm) +

t∑
m=1

rmwm−1

t∏
i=m+1

(1− ri)

(V.2)
with

0 < q0

t∏
m=1

(1− rm) ≤ qt (V.3)

≤ 1− (1− q0)

t∏
m=1

(1− rm) < 1, t ≥ 0.

If, in particular, wm ≡ w ∈ [0, 1] for m = 0, . . . , t− 1,
then

qt = w − (w − q0) ·
t∏

m=1

(1− rm). (V.4)

Proof: (see [3]) a) The first part is a standard result, the
second follows as

∑∞
i=0 ri = ∞ ⇐⇒

∑∞
i=0 cri = ∞. b)

follows, if rm = 1− (1− rm) is used on the left hand side. c)
(V.2) can be proven using induction on t. (V.4) follows from
(V.2) using b).

Now, (V.3) applied to (II.7) and (II.8) shows that

0 < Πt(a; i) < 1 (V.5)

for all t ≥ 0, i ∈ {1, . . . , L} and a ∈ A. We then also have

0 < Ci(y, a)Πt(a; i+1) < 1 (V.6)

for all t ≥ 0, i ∈ I, y ∈ Ri and a ∈ Ci(y).
In the unrestricted case as in [3], we have QΠt(a; i+1, y) =

Πt(a; i+1), i.e. the probability to continue a feasible partial
solution y ∈ Ri with a symbol a in the t-th iteration coincides
with the density Π(a; i+1). We may therefore directly use the
basic recursion (II.7) to derive the asymptotic behavior of the
procedure from Lemma 7. In the general constrained case this
is not possible, as QΠt does not fulfill an equation as (II.7).
But we can find a bounding probability Q′Πt

for QΠt
, for

which a similar recursion holds under certain conditions (see
Lemma 11 below).

For p ∈ P(A)L, i ∈ I, y ∈ Ri and a ∈ A define

Q′p(a; i+1, y) :=

{
p(a;i+1)∑

a′∈Ci(y)
p(a′;i+1) if a ∈ Ci(y),

0 otherwise,
(V.7)

with 0
0 = 0. This is similar to Qp except that the feasibility

distribution Ci(y, a) has been replaced by a constant on its
support Ci(y). Note, that for the unrestricted case of (II.1),
Qp, Q

′
p and p all coincide.

To bound Qp(a; i+1, y) with the help of Q′p(a; i+1, y), we
first need bounds on Ci(y, a). Let

η := max
{
Ci(y, a) | y ∈ Ri, a ∈ A, i ∈ I

}
(V.8)

and

λ := min
{
Ci(y, a) > 0 | y ∈ Ri, a ∈ A, i ∈ I

}
. (V.9)

Obviously, 0 < λ ≤ η ≤ 1. Now define the following two
bounding functions for x ∈ [0, 1]

h(x) :=
ηx

λ+ (η − λ)x
, `(x) :=

λx

η − (η − λ)x
. (V.10)

Then `(x) ≤ x ≤ h(x) and in the unrestricted case h(x) =
`(x) = x. Lemma 8 collects some properties of h and `.

Lemma 8. Let h, ` be as defined in (V.10).
a) h and ` are strictly increasing and continuous taking

values in [0, 1]. h is concave, ` is convex with `(x) ≤
x ≤ h(x), x ∈ [0, 1].

b) For η = λ we have h(x) = `(x) = x for x ∈ [0, 1], for
η > λ we have h(x) = x = `(x) ⇐⇒ x ∈

{
0, 1
}

.
c) h(x) = 1− `(1− x) and `(x) = 1− h(1− x).
d) Let 0 ≤ xn ≤ 1, n ∈ N, be a convergent sequence, then

for any 0 < c < 1, the following series are either all
convergent or all divergent

∞∑
n=1

xn,

∞∑
n=1

h(xn),

∞∑
n=1

`(xn),

∞∑
n=1

h(cxn),

∞∑
n=1

`(cxn)

Proof: Assertions a) - c) are straightforward to show.
Assertion d) follows immediately from the well-known limit
comparison test.

Lemma 9 below collects some properties of QΠt
that are

needed throughout the paper. Recall that � is the empty string
that we use as a starting value for the recursions. Note that
some assertions only hold if |Ci(y)| > 1. This excludes the
case that there is just one possible continuation of y, which
then must have probability one.

Lemma 9. Let i ∈ I, y ∈ Ri and a ∈ Ci(y). Then the
following holds.

a) `
(
Q′Πt

(a; i+ 1, y)
)
≤ QΠt

(a; i+ 1, y)
≤ h

(
Q′Πt

(a; i+ 1, y)
)

for all t ∈ N.
b) If |Ci(y)| = 1 then

QΠt
(a; i+ 1, y) = Q′Πt

(a; i+ 1, y) = 1.
If |Ci(y)| > 1, then 0 < Q′Πt

(a; i + 1, y) < 1 and
0 < QΠt

(a; i+ 1, y) < 1 for any t ≥ 0.

Proof: a) In view of Lemma 8 b) we only have to consider
the case |Ci(y)| > 1.

Qp(a; i+ 1, y) =
Πt(a; i+ 1)Ci(y, a)∑

a′∈AΠt(a′; i+ 1)Ci(y, a′)

≤ ηΠt(a; i+ 1)

ηΠt(a; i+ 1) + λ
∑
a′∈Ci(y),a6=a′ Πt(a′; i+ 1)

= h
(
Q′Πt

(a; i+ 1, y)
)
,

where we use (V.5). Similarly, the left-hand inequality of a)
is derived.

b) From (V.5) we have Q′Πt
(a; i+1, y) > 0. If |Ci(y)| > 1,

we see that Q′Πt
(a; i+1, y) < 1 for any a ∈ Ci(y) and t ∈ N,

this implies the conclusion using Lemma 8 b) and part a).
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B. Proof of Theorem 1

We first give lower bounds on the probabilities of a)
reaching the set S∗ of optimal solutions and b) of staying
forever with one (possibly non-optimal) solution .

Lemma 10. a) For s = (s1, . . . , sL) ∈ S and p0 ∈ P(A)L

let

c(s) := C0(�, s1)

L∏
i=2

Ci−1
(
(s1, . . . , si−1), si

)
and

δ(s) := p0(s) · c(s).

Then for τ as defined in (III.1)

P(τ <∞) (V.11)

≥ 1− min
s∗∈S∗

[ ∞∏
t=0

(
1− δ(s∗)

t∏
m=1

(1− %m)L
)]N

.

b) Let s ∈ S, then, with h as defined in (V.10),

P(X
(n)
t = s for n = 1, . . . , N and t = 0, 1, . . .)

≥ QΠ0(s)N
[ ∞∏
t=1

(
1− h

( t∏
m=1

(1− %m)
))]LN

.

Note that the bound in part a) holds for the first hitting
time of any subset of solutions, so it is in fact a bound for
the probability that arbitrary solutions will be visited in finite
time.

Proof of Lemma 10: a) (cf. [3]) We fix an arbitrary
optimal solution s∗ =

(
s∗1, . . . , s

∗
L

)
∈ S∗, then we have

P(τ =∞) = P
( ∞⋂
t=0

[S∗ ∩ Xt = ∅]
)
≤ P

( ∞⋂
t=0

[s∗ /∈ Xt]
)

= P(s∗ /∈ X0)

∞∏
t=1

P
[
s∗ /∈ Xt | s∗ /∈ Xm,m = 0, . . . , t−1

]
.

(V.12)

We now derive an upper bound for the factors in (V.12). First
we have

P
[
s∗ /∈ Xt | s∗ /∈ Xm,m = 0, . . . , t− 1

]
(V.13)

= E
[
P
[
s∗ /∈ Xt | Πt

] ∣∣∣ s∗ /∈ Xm,m = 0, . . . , t− 1
]
.

From the definition (II.3) of Qp and (V.3) of Lemma 7 applied
with q0 = Π0(a; i) we have

QΠt
(a; i, y) ≥ Πt(a; i)Ci−1(y, a)

≥ Π0(a; i)Ci−1(y, a)

t∏
m=1

(1− %m)

for all a ∈ A, y ∈ Ri−1, i ∈ {1, . . . , L} and t ≥ 0. As the
solutions are sampled i.i.d., we may now conclude

P
[
s∗ /∈ Xt | Πt

]
(V.14)

=
(
P
[
s∗ 6= X

(1)
t | Πt

])N
=
(

1−P
[
s∗ = X

(1)
t | Πt

])N
≤
(

1− δ(s∗)
t∏

m=1

(1− %m)L
)N

.

For the first factor in (V.12), we have from (V.14) for t = 0

P(s∗ /∈ X0) ≤
(

1− δ(s∗)
)N

.

Combining these results, we obtain

P(τ <∞) = 1−P(τ =∞)

≥ 1−
[ ∞∏
t=0

(
1− δ(s∗)

t∏
m=1

(1− %t)L
)]N

(V.15)

As this holds for all s∗ ∈ S∗, the assertion follows.
b) Let s ∈ S. We write X

(·)
t ≡ s for X

(n)
t = s, n =

1, . . . , N and S for the event X(·)
m ≡ s for all m = 0, . . . , t−

1. Then, as samples are i.i.d.,

P
[
X

(·)
t ≡ s, t = 0, 1, . . .

]
= P

[
X

(·)
0 ≡ s

]
· (V.16)

·
∞∏
t=1

P
[
X

(·)
t ≡ s

∣∣ X(·)
m ≡ s for m = 0, . . . , t− 1

]
= P

[
X

(1)
0 = s

]N · ∞∏
t=1

P
[
X

(1)
t = s

∣∣ S ]N
.

We have P(X
(1)
0 = s) = QΠ0

(s) for the first factor. Using
Lemma 9 a), we obtain for the other factors in (V.16) with
s|i := (s1, . . . , si)

P
[
X

(1)
t = s

∣∣ S ]
= P

[
X

(1)
t (1) = s1

∣∣ S ]
·
L∏
i=2

P
[
X

(1)
t (i) = si

∣∣ X(1)
t (1, . . . , i− 1) = s|i−1, S

]
= E

[
QΠt(s1; 1, �)

∣∣ S ]
·
L∏
i=2

E
[
QΠt

(si; i, s|i−1)
∣∣ X(1)

t (1, . . . , i− 1) = s|i−1, S
]

≥
L∏
i=1

E
[
`
(
Q′Πt

(si; i, s|i−1)
)∣∣ S ],

with s|0 = �. Under the condition S, the relative frequencies
w(si; i,Xm) are all equal to 1 for all m = 0, . . . , t−1, hence
we may use Lemma 11 d) below (see the remark following
Lemma 11 and (V.36)) to obtain

Q′Πt
(si; i, s|i−1) ≥ 1−

t∏
m=1

(1− %m)

for t ≥ 1 and i = 1, . . . , L. Now, from (V.16), we obtain using
Lemma 8 c)

P
[
X

(·)
t ≡ s, t = 0, 1, . . .

]
(V.17)

≥ QΠ0
(s)N

[ ∞∏
t=1

(
1− h

( t∏
m=1

(1− %m)
))]LN

.

Proof of Theorem 1: a) From Lemma 7 a), we see that
with rt :=

∏t
m=1(1 − %m)L and c := δ(s∗), the assumption∑∞

t=1

∏t
m=1(1− %m)L =∞ implies

∞∏
t=1

(
1− δ(s∗)

t∏
m=1

(1− %m)L
)

= 0.
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Now P(τ <∞) = 1 follows from Lemma 10.
b) Let s ∈ S − S∗ with QΠ0(s) > 0. Note that such an s

must exist, otherwise we could only sample optimal solutions.
If P(τ <∞) = 1, the samples cannot be identical to s for all
times, hence from Lemma 10 b) we must have

0 = P(X
(·)
t ≡ s, t = 0, 1, . . .)

≥ QΠ0(s)N
[ ∞∏
t=1

(
1− h

( t∏
m=1

(1− %m)
))]LN

,

and
∏∞
t=1

(
1 − h

(∏t
m=1(1 − %m)

))
= 0 must hold. From

Lemma 7 a) we see that this implies

∞∑
t=1

h
( t∏
m=1

(1− %m)
)

=∞.

The assertion now follows from Lemma 8 d).
c) Assume %t ≡ % > 0, we have

∑∞
t=1

∏t
m=1(1− %) <∞,

hence by part b) of this Theorem, P(τ < ∞) < 1. Note that
the infinite product in (V.15) in this case is smaller than 1 and
continuous in %, so (V.15) approaches 1 for either N →∞ or
%→ 0.

C. Proof of Theorem 2

Proof: With A = {0, 1}, we write πt(i) := Πt(1; i).
As we consider the unrestricted case here, the sample Xt =

(X
(1)
t , . . . ,X

(N)
t ) can be viewed as a random matrix with

mutually independent entries and solution X
(n)
t as n-th row.

We denote by X
[·]
t =

(
X

[1]
t , . . . ,X

[N ]
t

)
this matrix with

rows ordered according to increasing cost function values :
f(X

[1]
t ) ≤ · · · ≤ f(X

[N ]
t ).

Then Nb is the sub-matrix of the first Nb rows of X [·]

and the empirical distributions from Nb may be written as
w(1; i,Xt) = 1

Nb

∑Nb
n=1 X

[n]
t (i) =: w(i,Xt) and w(Xt) :=

(w(1,Xt), . . . , w(L,Xt)).
For the proof, we let w(Xt), t = 0, 1, . . . , move over a

sequence of increasing levels w∗t . These levels are defined in
such a way that f(Xt) is strictly decreasing and at the same
time the update of πt can be controlled such that we are able
to give a lower bound on the probability for this to happen.

For t = 0, . . . , L− 1 let

w∗t :=
(
w∗t (1), . . . , w∗t (L)

)
:= (1, . . . , 1, αt, . . . , αt) (V.18)

with t+ 1 entries ‘1’ and some αt ∈ (0, 1) defined in (V.21).
We write w(Xt) � w∗t if and only if w(i,Xt) = 1 for i =
1, . . . , t+1 and w(i,Xt) ≥ αt for i = t+2, . . . , L. For t =
L−1, w(Xt) � w∗t means that Nb consists of the optimal
solution s∗ = (1, . . . , 1) only. Hence we have

P(τ < L) ≥ P(w(XL−1) � w∗L−1) (V.19)

≥ P
(
w(X0) � w∗0 , . . . , w(XL−1) � w∗L−1

)
= P(w(X0) � w∗0) ·
L−1∏
t=1

P
[
w(Xt) � w∗t | w(Xm) � w∗m,m = 0, . . . , t− 1

]
.

We show below that there are constants a, b, c > 0 such that
for all L large enough and for all N

P
[
w(Xt) � w∗t | w(Xm) � w∗m,m = 0, . . . , t− 1

]
≥ (1− e−aN )

(
1− e−b

N
L2 +c

)L−t−1
. (V.20)

With N = L2+ε for some ε > 0 we may then conclude that

P(τ < L) ≥ (1− e−aL
2+ε

)L
(
1− e−bL

ε+c
)(L2−L)/2

.

Now this last bound can be shown to converge to 1 for L→
∞ using standard methods from analysis. Hence the proof
of Theorem 2 is complete, once we have shown (V.20) for
t = 0, . . . , L− 1.

In the first step we show how the levels w∗t influence πt.
We abbreviate the event [w(Xm) � w∗m,m = 0, . . . , t−1] by
Wt, W0 indicating the empty condition. Let

αt :=
1

2
(1− 1

L
)t+1, t = 0, . . . , L−1, and α−1 :=

1

2
. (V.21)

Conditioned on Wt,

πt(i) ≥
{

1− (1− %)t−i+1 for 1 ≤ i ≤ t
αt−1 for t < i ≤ L (V.22)

for t = 0, . . . , L− 1. The proof is by induction on t using the
basic recursion (II.7) and the property

w(i,Xm) = 1 for all m = i− 1, i, . . . , t− 1, if i ≤ t,
w(i,Xm) ≥ αm for all m = 0, 1, . . . , t− 1, if i > t,

which follows from the definition of w∗t under Wt. Let vt+1 =

P
[
X

(n)
t (1) = · · · = X

(n)
t (t+1) = 1 |Wt

]
be the probability

to sample a solution that has t+1 leading 1s, then from (V.22)
we obtain

vt+1 =

t+1∏
i=1

πt(i) ≥
1

3e

∞∏
m=1

(
1− (1− %)m

)
=: κ(%) (V.23)

for L large enough, as then αt ≥ 1/(3e).
Now we want to determine simple conditions on Xt that

imply w(Xt) � w∗t . To do so, we look at the matrix Xt

columnwise observing the independence of its entries.
Let M (t+1) be the number of rows with at least t+1 leading

1s, then w(i,Xt) = 1, i = 1, . . . , t+1, requires that M (t+1) ≥
Nb. These M (t+1) rows are also the first rows in X

[·]
t . Next,

w(i,Xt) ≥ αt requires for the number of 1s in column i =
t+ 2

Y (i) :=

M(i−1)∑
n=1

X
[n]
t (i) ≥ αtNb. (V.24)

Here we have to restrict the number of rows to the present
‘candidate’ rows 1, . . . ,M (i−1) from which the set Nb is
selected. After looking at column i in this way, we define

M (i) := max{Nb, Y (i)} (V.25)

and repeat (V.24), (V.25) for i = t+ 3, . . . , L. We then obtain

P
[
w(Xt) � w∗t |Wt

]
(V.26)

≥ P
[
M (t+1) ≥ Nb, Y (i) ≥ αtNb, i = t+ 2, . . . , L |Wt

]
= P

[
M (t+1) ≥ Nb |Wt

]
·

L∏
i=t+2

P
[
Y (i) ≥ αtNb
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| Y (l) ≥ αtNb, l = t+2, . . . , i−1,M (t+1) ≥ Nb,Wt

]
To derive the desired lower bounds for these expressions we
need the Chernoff bound (see e.g. [14], Theorem 4.2) in the
following form: let Z1, . . . , Zm be i.i.d. 0-1-distributed with
success probability p, then for any 0 < r < mp we have

P
( m∑
i=1

Zi ≤ r
)
≤ e−

1
2 (1−

r
mp )

2mp. (V.27)

Conditioned on Wt, M (t+1) is distributed as the number of
successes in a row of N i.i.d. experiments, each with success
probability p := vt+1. We obtain for β < κ(%) ≤ vt+1 that
Nb = bβNc ≤ βN < vt+1N . Hence for t = 0, . . . , L− 1

P
[
M (t+1) ≥ Nb |Wt

]
= 1−P

[
M (t+1) < Nb |Wt

]
≥ 1−E

[
e
− 1

2 (1−
Nb

vt+1N
)2vt+1N |Wt

]
(V.28)

≥ 1− e−
1
2 (1−

β
κ(%)

)2κ(%)N ,

where we used (V.27). Hence, in (V.20) we may define
a := 1

2 (1 − β
κ(%) )

2κ(%). Similarly, Y (t+2) is distributed as
the number of 1s in M (t+1) i.i.d. trials each with success
probability πt(t + 2). From (V.22) and the definition of αt
we see that under the condition used in (V.26) we have
πt(t+ 2)M (t+1) ≥ αt−1M (t+1) > αtNb. Using the Chernoff
bound we therefore obtain, for L large enough,

P
[
Y (t+2) ≥ αtNb |Wt,M

(t+1) ≥ Nb
]

(V.29)

= 1−P
[
Y (t+2) < αtNb |Wt,M

(t+1) ≥ Nb
]

≥ 1− e−
1
2 (1−

αt
αt−1

)2
Nb
3e = 1− e−

Nb
6eL2 ≥ 1− e−

βN−1

6eL2 ,

where we used αt
αt−1

= 1− 1
L . A completely analogous deriva-

tion holds for the other factors in (V.26) with i = t+3, . . . , L.
Hence, with b := β

6e , c := 1
6e , we see from (V.29), (V.28) and

(V.26) that (V.20) holds for L large enough.

D. Proof of Theorem 5

The proof of Theorem 5 about convergent samples uses an
inductive argument. The induction hypothesis assumes, that
the first i positions of all samples have already converged
against a fixed value y ∈ Ri and we show that then also the
sampled value on the i+ 1st position will become constant in
finite time. More precisely, we assume as induction hypothesis
that for a fixed i ∈ I the following holds with probability one

lim
t→∞

X
(n)
t (1, . . . , i) = y

for all n = 1, . . . , N and some y ∈ Ri. As Ri, the set of
possible values of X(n)

m (1, . . . , i) is finite, this condition is
equivalent to requiring that there are random variables y and
T taking on values in Ri and N, defined on the common
probability space, such that the following event has probability
one:

∀m ≥ 0 ∀n = 1, . . . , N X
(n)
T+m(1, . . . , i) = y. (V.30)

Lemmas 11 and 12 below contain the crucial induction step
to prove convergence of samples. Lemma 11 shows that under
condition (V.30) we may apply the recursion of Lemma 7 c) to

Q′Πt
. We use the following definitions for p ∈ P(A)L, i ∈ I

and y ∈ Ri
Gi(y,p) :=

∑
a′∈Ci(y)

p(a′; i+ 1) and (V.31)

%yt :=
%t

Gi(y,Πt)
for t ≥ 1. (V.32)

From (V.5) we see that always Gi(y,Πt) > 0.

Lemma 11. Let i ∈ I be fixed and assume that (V.30) holds
with probability one for random variables y, T as above. Then
the following holds almost surely for all m ≥ 1

a) Gi(y,ΠT+m) = 1−
(
1−Gi(y,ΠT )

) m∏
l=1

(1− %T+l),

and Gi(y,ΠT+m) is an increasing function of m .
b) 0 < %T+m ≤ %yT+m < 1.
c) For all a ∈ Ci(y) we have

Q′ΠT+m
(a; i+ 1, y) = (1− %yT+m)Q′ΠT+m−1

(a; i+ 1, y)

+ %yT+mw(a; i+ 1,XT+m−1). (V.33)

Thus the implications of Lemma 7 c) hold with qt :=
Q′ΠT+t

(a; i + 1, y), rt := %yT+t and wt := w(a; i +
1,XT+t) with the restriction that the strict right hand
bound in (V.3) only holds if |Ci(y)| > 1.

d) If w(a; i+1,XT+l) = w ∈ [0, 1] for all l = 0, . . . ,m−
1, then

Q′ΠT+m
(a; i+ 1, y)

= w −
(
w −Q′ΠT

(a; i+1, y)
) m∏
l=1

(1− %yl ) (V.34)

≥ w −
(
w −Q′ΠT

(a; i+1, y)
) m∏
l=1

(1− %l). (V.35)

In fact, the following proof shows that, for the assertions of
Lemma 11 to hold for a fixed m ≥ 1, instead of (V.30) the
following weaker condition is sufficient

∀l = 0, . . . ,m− 1 ∀n = 1, . . . , N X
(n)
T+l(1, . . . , i) = y.

(V.36)
Proof of Lemma 11: a) From the basic recursion (II.7),

we have for any m ≥ 1

Gi(y,ΠT+m) =
∑

a′∈Ci(y)

ΠT+m(a′; i+ 1) (V.37)

= (1− %T+m)Gi(y,ΠT+m−1) + %T+m,

as
∑
a′∈Ci(y) w(a′; i + 1,XT+m−1) = 1. Hence, qt :=

Gi(y,ΠT+t) fulfills the condition (V.1) of Lemma 7 with
wm ≡ 1. Now (V.4) shows that

Gi(y,ΠT+m) = 1−
(
1−Gi(y,ΠT )

) m∏
l=1

(1− %T+l).

Also, from (V.37) we have Gi(y,ΠT+m+1) ≥ Gi(y,ΠT+m).
b) We have 0 < %T+m ≤ %yT+m and Gi(y,ΠT+m−1) > 0

by (V.5). From (V.37) we now see %T+m < Gi(y,ΠT+m),
hence %yt < 1.

c) From (V.37) we obtain

(1− %T+m)Gi(y,ΠT+m−1) = Gi(y,ΠT+m)− %T+m.
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This together with the basic recursion for Πt shows that
Q′ΠT+m

fulfills the recursion

Q′ΠT+m
(a; i+ 1, y) =

ΠT+m(a; i+ 1)

Gi(y,ΠT+m)

=
(1− %T+m)ΠT+m−1(a; i+ 1)

Gi(y,ΠT+m)

+
%T+m w(a; i+ 1,XT+m−1)

Gi(y,ΠT+m)

= (1− %yT+m)Q′ΠT+m−1
(a; i+ 1, y)

+ %yT+m w(a; i+ 1,XT+m−1).

For the application of Lemma 7 c), we only have to check
that 0 < rt = %yt < 1, which was shown in part b), and
0 < q0 = QΠT

(a; i + 1, y) < 1 for |Ci(y)| > 1, which was
shown in Lemma 9 b).

d) From part c) and Lemma 7 (V.4) with q0 = Q′ΠT
(a; i+

1, y) we obtain

Q′ΠT+m
(a; i+1, y) = w −

(
w −Q′ΠT

(a; i+1, y)
) m∏
l=1

(1− %yl )

such that the assertion follows from part b).
Lemma 12 contains the induction step for the proof of

Theorem 5.

Lemma 12. Assume that for some % > 0 we have

%t ≥ % > 0 for all t ≥ 1, (V.38)

and assume, as in Lemma 11, that there are i ∈ I and random
variables y, T such that (V.30) holds with probability one.
Then the following holds almost surely: there are T ′ ≥ 0
and a0 ∈ A with

X
(n)
T ′+m(i+ 1) = a0 for all n = 1, . . . , N and all m ≥ 0.

(V.39)

This Lemma says that, if all samples have a common leading
partial solution y of length i after a finite number of iterations,
then the samples will finally also coincide on the next position
i+1, if %t is bounded away from 0. Note that the condition is
always fulfilled for i := 0, y := �. Thus iterated application
of this Lemma allows to prove Theorem 5 below.

Proof of Lemma 12: Part of this proof extends the
approach used in [3] to prove convergence of densities and
closes a small gap in that proof.

As the proof is quite long, we separate it into several labeled
steps. Let i ∈ I be fixed and let y and T be such that (V.30)
holds with probability one. Note that if |Ci(y)| = 1, the
conclusion trivially holds, so we may assume |Ci(y)| > 1.
To show the final assertion of the Lemma we have to prove:
(ConvQ) There is a (random variable) a0 taking on values in
A such that almost surely

lim
t→∞

QΠt(a0; i+ 1, y) = lim
t→∞

Q′Πt
(a0; i+ 1, y) = 1.

(ConvQ) will follow, after we have shown convergence of the
relative frequencies:

(ConvW) There is a (random variable) a0 as above such that
almost surely

lim
t→∞

w(a; i+ 1, Xt) =
{

1 if a = a0
0 if a 6= a0

for all a ∈ A.

(ConvW) in turn follows, if we have shown that w(a; i+1, Xt)
finally becomes monotone:
(MonW) For all a ∈ Ci(y), it holds almost surely that

Z(a;m) := w(a; i+ 1,XT+m)− w(a; i+ 1,XT+m−1)

has only finitely many sign changes as function of m.
We now prove these three steps in reverse order. Recall that

under the condition of the Lemma, almost all solutions from
XT+m and XT+m−1 coincide in their first i positions.

To prove (MonW) let Mk(a) be the k-th m such that
Z(a;m + 1)Z(a;m) < 0. As A is finite, (MonW) holds if
for any fixed a ∈ Ci(y) and Mk := Mk(a)

P
(
∀k ∈ N Mk <∞

)
= 0. (V.40)

Now, observe that

P
(
∀k ∈ N Mk <∞

)
= P(M1 <∞)

∞∏
k=2

P
[
Mk <∞ |Mk−1 <∞

]
≤
∞∏
k=2

(
1−P

[
Mk =∞ |Mk−1 <∞

])
.

(V.41)

We are going to show that P
[
Mk =∞ |Mk−1 <∞

]
≥ κ >

0 for a constant lower bound κ > 0, this proves (V.40). We
have

P
[
Mk =∞ |Mk−1 <∞

]
=

∞∑
d=k−1

P
[
Mk =∞ |Mk−1 = d

]
·P
[
Mk−1 = d |Mk−1 <∞

]
.

If Mk−1 = d then Z(a; d+ 1) 6= 0, hence

P
[
Mk =∞ |Mk−1 = d

]
(V.42)

= P
[
Mk =∞ |Mk−1 = d, Z(a; d+ 1) > 0

]
·P
[
Z(a; d+ 1) > 0 |Mk−1 = d

]
+ P

[
Mk =∞ |Mk−1 = d, Z(a; d+ 1) < 0

]
·P
[
Z(a; d+ 1) < 0 |Mk−1 = d

]
.

We use the abbreviation Wm := w(a; i + 1,XT+m), M
for the event [Mk−1 = d, Z(a; d + 1) > 0], and Wm for
[Wl = 1, l = d+ 2, . . . ,m− 1]. Conditioned on M, the event
Mk =∞ is implied by Wm = 1,m ≥ d+2. We can therefore
give the following rough bound for the first term in (V.42)

P
[
Mk =∞ |Mk−1 = d, Z(a; d+ 1) > 0

]
≥ P

[
Wm = 1,m ≥ d+ 2 |M

]
= P

[
Wd+2 = 1 |M

] ∞∏
m=d+3

P
[
Wm = 1 |Wm,M

]
≥ E

[[
QΠT+d+2

(a; i+ 1, y)
]N |M ]

(V.43)
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·
∞∏

m=d+3

E
[[
QΠT+m

(a; i+ 1, y)
]N ∣∣∣ Wm,M

]
.

From Lemma 9 a) and (V.44) below, we get for the first factor
in (V.43)

E
[[
QΠT+d+2

(a; i+ 1, y)
]N |M]

≥ E
[[
`
(
Q′ΠT+d+2

(a; i+ 1, y)
)]N |M] ≥ `

( %
Nb

)N
,

where we used the fact that M implies Z(a; d + 1) > 0.
Therefore w(a; i+ 1,XT+d+1) > w(a; i+ 1,XT+d) ≥ 0 and
w(a; i+ 1,XT+d+1) ≥ 1

Nb
. Lemma 11 c) now shows

Q′ΠT+d+2
(a; i+ 1, y) ≥

%yT+d+2

Nb
≥ %

Nb
> 0. (V.44)

For the second factor in (V.43), we see from Lemma 11 d)
that, under the condition Wl = 1, l = d + 2, . . . ,m − 1, we
have

Q′ΠT+m
(a; i+ 1, y) ≥ 1− (1− %)m−d−2.

Hence, in the second term of (V.43) the integrand can be
bounded for all m ≥ d+ 3 in the following way[
QΠT+m

(a; i+ 1, y)
]N ≥ [`(Q′ΠT+m

(a; i+ 1, y)
)]N

≥
[
`
(
1− (1− %)m−d−2

)]N
=
[
1− h

(
(1− %)m−d−2

)]N
.

Collecting the equations above, we now obtain for all k, d ∈ N

P
[
Mk =∞ |Mk−1 = d, Z(a; d+ 1) > 0

]
(V.45)

≥ `
( %
Nb

)N ∞∏
m=d+3

[
1− h

(
(1− %)m−d−2

)]N
= `
( %
Nb

)N ∞∏
m=1

[
1− h

(
(1− %)m

)]N
=: κ.

From Lemma 8 d), we see that
∑∞
m=1(1− %)m <∞ implies∑∞

m=1 h
(
(1− %)m

)
<∞, hence κ > 0.

In a completely analogous manner, using the events Wm =
0,m ≥ d+ 2, we can also show that

P
[
Mk =∞ |Mk−1 = d, Z(a; d+ 1) < 0

]
≥ κ,

which now proves (V.40) and (MonW).
We are now going to prove (ConvW). From (MonW) we

know that m 7→ w(a; i + 1,XT+m) must eventually be
monotonic and therefore converge to one of the values in
W := {0, 1

Nb
, . . . , Nb−1Nb

, 1} (remember that w(·) is a relative
frequency from a sample of size Nb). Hence, there is a random
variable T ′ ≥ T , and for each a ∈ A a random variable
Va taking on values in W , such that with probability 1,
w(a; i+ 1,XT ′+m) = Va for all m ≥ 0.

>From the recursion (V.33) and Lemma 7 c) and b), we see
that, under our conditions for all m ≥ 0 and a ∈ Ci(y),

Q′ΠT ′+m(a; i+ 1, y) = Q′ΠT ′
(a; i+ 1, y) (V.46)

·
m∏
l=1

(1− %yT ′+l) + Va
(
1−

m∏
l=1

(1− %yT ′+l)
)
.

From (V.38) and %yT ′+l ≥ %T ′+l > %, we have
∑∞
l=1 %

y
T ′+l =

∞ and hence
∏∞
l=1(1−%yT ′+l) = 0. Therefore, (V.46) implies

that, almost surely,

lim
t→∞

Q′Πt
(a; i+ 1, y) = Va for all a ∈ Ci(y). (V.47)

The bounds from Lemma 9 a) and the continuity of the
bounding functions h and ` (see Lemma 8 a)) lead us to
conclude that for all a ∈ Ci(y)

`(Va) ≤ lim inf
t→∞

QΠt
(a; i+ 1, y) (V.48)

≤ lim sup
t→∞

QΠt
(a; i+ 1, y) ≤ h(Va).

We want to show next, that the limit Va can take on values
in {0, 1} only, more precisely:

∃a0 ∈ Ci(y) Va0 = 1 and ∀a ∈
(
Ci(y)− {a0}

)
Va = 0

(V.49)
holds almost surely. To prove (V.49), we first show that for
all a ∈ Ci(y) we have P(Va ∈ (0, 1)) = 0. We again use
the abbreviation Wm = w(a; i + 1,XT+m) and W0 := W ∩
(0, 1) = { 1

Nb
, 2
Nb
, . . . , 1− 1

Nb
}. We then have

P(Va ∈ (0, 1)) = P( lim
k→∞

Wk ∈ W0) (V.50)

= lim
k→∞

(
P
(
Wk ∈ W0

)
·
∞∏

m=k+1

P
[
Wm ∈ W0 |Wl ∈ W0, l = k, . . . ,m− 1

])
≤ lim
k→∞

∞∏
m=k+1

P
[
Wm ∈ W0 |Wl ∈ W0, l = k, . . . ,m− 1

]
.

Writing W for Wl ∈ W0, l = k, . . . ,m − 1, we have for
m > k

P[Wm ∈ W0 |Wl ∈ W0, l = k, . . . ,m− 1] (V.51)

= 1−E
[(

1−QΠT+m
(a; i+ 1, y)

)N ∣∣ W]
≤ 1−

(
1− h

(
(1− %)m−k + 1− 1

Nb

))N
,

where we used the fact that under W we have Wl ≤ 1 −
1
Nb
, l = k, . . . ,m− 1. Hence we can see as in (V.46), that for

m > k

Q′ΠT+m
(a; i+ 1, y) ≤ Q′ΠT+k

(a; i+ 1, y)· (V.52)
m∏

l=k+1

(1− %yT+l) + (1− 1

Nb
)
(
1−

m∏
l=k+1

(1− %yT+l)
)

≤
m∏

l=k+1

(1− %yT+l) + 1− 1

Nb
≤ (1− %)m−k + 1− 1

Nb

But then, for m large enough, the upper bound of the probabil-
ity (V.51) is smaller than 1, and the infinite product in (V.50)
vanishes. Therefore, we have shown

P
(
Va ∈ {0, 1} for all a ∈ Ci(y)

)
= 1. (V.53)

We also know that, P-almost surely,

1 =
∑

a∈Ci(y)

Wm =
∑

a∈Ci(y)

w(a; i+ 1,XT+m)
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for all m ≥ 0. Hence, this must also hold for the limits:
P
(∑

a∈Ci(y) Va = 1
)

= 1. This together with (V.53) proves
(V.49) and hence (ConvW).

Now (ConvQ) immediately follows: from (V.47) we see that
there is a random variable a0 such that

P
(

lim
t→∞

Q′Πt
(a0; i+ 1, y) = 1

)
= 1. (V.54)

From h(1) = `(1) = 1 (see Lemma 8 b)) and (V.48) we see
that the same must hold for QΠt(a0; i+ 1, y).

Thus we have proved (ConvQ) and we are now going to
show that this (more precisely (V.54)) implies the assertion of
the Lemma, i.e. X(n)

m (i + 1) = a0, n = 1, . . . , N, for large
enough m, P-almost surely. In other words, the next position
i+ 1 also becomes identical in all samples after finitely many
iterations.

We write [X
(·)
t (i+1) ≡ a0] for the event [X

(n)
t (i+1) =

a0, n = 1, . . . , N ] that all samples have the same i + 1-st
component. We then have

P
(
∃k ∈ N ∀m ≥ k X(·)

m (i+1) ≡ a0
)

(V.55)

= lim
k→∞

(
P
(
X

(·)
k (i+1) ≡ a0

)
·
∞∏

m=k+1

P
[
X(·)
m (i+1) ≡ a0

∣∣X(·)
l (i+1) ≡ a0, l = k, . . . ,m− 1

])
.

Now from (V.54), using bounded convergence, we see that for
the first factor

lim
k→∞

P
(
X

(·)
k (i+1) ≡ a0

)
= lim
k→∞

E
(
QΠk

(a0; i+1, y)N
)

= E
(

lim
k→∞

(
QΠk

(a0; i+1, y)
)N)

= 1. (V.56)

For the second expression in (V.55), we obtain for m ≥ k ≥ T

P
[
X(·)
m (i+1) ≡ a0

∣∣ X(·)
l (i+1) ≡ a0, l = k, . . . ,m− 1

]
= E

[(
QΠm

(a0; i+1, y)
)N ∣∣∣

X
(·)
l (i+1) ≡ a0, l = k, . . . ,m− 1

]
. (V.57)

We want to bound this last expression from below using Q′Πm
.

The condition X
(·)
l (i+1) ≡ a0, l = k, . . . ,m − 1, implies

w(a0, i+1,Xl) = 1 for l = k, . . . ,m− 1. Therefore, we have
from Lemma 11 d)

Q′Πm(a0; i+1, y)

≥ 1− (1−Q′Πk
(a0; i+1, y))(1− %)m−k.

Using the bounds from Lemma 9 a) and Lemma 8 for m ≥
k ≥ T , we arrive at[

QΠm(a0; i+1, y)
]N ≥ [`(Q′Πm

(a0; i+1, y)
)]N

≥
[
1− h

((
1−Q′Πk

(a0; i+1, y)
)
(1− %)m−k

)]N
=:
[
1−H(k,m−k)

]N
(V.58)

where we introduced the abbreviation H(k,m−k). Note that
H(k,m−k) is independent of the condition X(·)

l (i+1) ≡ a0, l =

k, . . . ,m−1. Combining (V.57) and (V.58) we may bound the
second term in (V.55) from below by

lim
k→∞

∞∏
m=k+1

E
(
(1−H(k,m−k))

N
)

(V.59)

≥
[

lim
k→∞

∞∏
m=1

(
1−EH(k,m)

)]N
=
[ ∞∏
m=1

(
1−E

(
lim
k→∞

H(k,m)

))]N
= 1,

as limk→∞H(k,m) = 0 almost surely by (V.54). To see that
lim and product may be interchanged, we use logarithms and
then bounded convergence with 0 ≤ − ln(1 − EHk,m) ≤
− ln(1− h((1− %)m) for all k.

From (V.59), (V.56) and (V.55), we now see that there is a
random variable a0 such that with probability one

∃k ∈ N ∀m ≥ k X(·)
m (i+1) ≡ a0,

but this is the assertion of the Lemma.
We can now prove Theorem 5 about the convergence of the

samples.
Proof of Theorem 5: a) For i ∈ I , let Γi denote the event

∃y ∈ Ri ∀n = 1, . . . , N lim
t→∞

X
(n)
t (1, . . . , i) = y,

and let γi be the event

∃a0 ∈ A ∀n = 1, . . . , N lim
t→∞

Xt(i)
(n) = a0.

In Lemma 12, we have shown that, if P(Γi) = 1, then
also P(γi+1) = 1. But, as Γi ∪ γi+1 ⊂ Γi+1, we see that
P(Γi) = 1 implies P(Γi+1) = 1. As all solutions have the
empty substring � as partial solution, we have P(Γ0) = 1, as
was noted before. But then we see from repeated application of
Lemma 12 that P(ΓL) = 1, i.e. convergence of the complete
samples holds with probability one.

b) We first show that convergence of samples implies
∞∑
m=1

m∏
l=1

(1− %�l ) <∞. (V.60)

Assume that convergence of samples holds, then there must
be at least one s = (s1, . . . , sL) ∈ S with

0 < P
(

lim
t→∞

X
(n)
t = s for n = 1, . . . , N

)
≤ P

(
lim
t→∞

X
(n)
t (1) = s1 for n = 1, . . . , N

)
= lim
k→∞

P
(
X

(·)
k (1) ≡ s1

)
·
∞∏

m=k+1

P
[
X(·)
m (1) ≡ s1 |X(·)

l (1) ≡ s1, l = k, . . . ,m− 1
]

≤ lim
k→∞

∞∏
m=k+1

E
[(
h
(
Q′Πm

(s1; 1, �)
))N |

w(s1; 1,Xl) = 1, l = k, . . . ,m− 1
]

where we used the bound of Lemma 9 a). From Lemma 11
c) and (V.3) of Lemma 7, we see that

E
[(
h
(
Q′Πm

(s1; 1, �)
))N |w(s1; 1,Xl) = 1, l = k, . . . ,m− 1

]
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≤
(
h
(
1− (1−Q′Π0

(s1; 1, �))
m∏
l=1

(1− %�l )
))N

=
(

1− `
(
(1−Q′Π0

(s1; 1, �))
m∏
l=1

(1− %�l )
))N

.

Hence there must be k ≥ 0 such that

0 <

∞∏
m=k+1

(
1− `

(
(1−Q′Π0

(s1; 1, �))
m∏
l=1

(1− %�l
)))

.

By Lemma 7 a), this is only possible if
∞∑
m=1

`
(
(1−Q′Π0

(s1; 1, �))
m∏
l=1

(1− %�l
))
<∞, (V.61)

and by Lemma 8 d), this in turn implies (V.60). Now we show
that (V.60) implies that there is a positive probability to stay
in non-optimal solutions forever, hence P(τ <∞) < 1. From
(II.9), we know that there are solutions s = (s1, . . . , sL), s′ =
(s′1, . . . , s

′
L) with s1 6= s′1. As we have |S∗| = 1, we may

assume s ∈ S − S∗. Then there is a positive probability that
all samples have s1 at their first position and therefore cannot
be optimal. This can be shown in a derivation similar to (V.16)
to (V.17) restricted to s1.

c) If we have convergent samples, then for some s ∈ S

w(a; i,XT+m) =

{
1 if a = si
0 else

for all i = 1, . . . , L,m ≥ 0, and hence by (V.4)

ΠT+m(si; i) = 1−
(
1−ΠT (si; i)

) m∏
l=1

(1− %l). (V.62)

Now the assertion limm→∞ΠT+m(si; i) = 1 follows if∏∞
l=1(1 − %l) = 0. From (V.60), we see that

∑∞
l=1 %

�
l = ∞,

and we may conclude from (II.8) and Lemma 11 a)

lim
l→∞

%l
%�l

= lim
l→∞

G0(�,Πl) > 0.

Hence, we also have
∑∞
l=1 %l =∞ implying the assertion.

d) (see also [3]) From Lemma 7 (V.3) we have

Πt(a; i) ≥ Π0(a; i)

t∏
m=1

(1− %m).

As limt→∞Πt(a; i) = 0 must occur with positive probability
for some a and i, and as Π0(a; i) > 0 by (II.8), the assertion
follows.

E. Proof of Theorem 6

We start with a Proposition on the convergence of the
density.

Lemma 13. Let (ek)k≥1 be an increasing unbounded se-
quence in N with e1 = 1 and define

1− βk :=

ek+1−1∏
m=ek+1

(1− %m), for k ≥ 1.

If (%t)t≥1 is chosen such that for some % > 0 and all k ≥ 1

%ek ≥ % and
∞∑
k=1

βk <∞, (V.63)

then, in the unrestricted case, the algorithm has a convergent
density.

Here, the ek represent embedded points of time at which %t
is bounded away from 0, and βk summarizes the development
of %t between these points.

Proof: Fix i ∈ {1, . . . , L} and a ∈ A. We have to show
that

lim
t→∞

Πt(a; i) ∈ {0, 1} (V.64)

almost surely. Note that, as there are no constraints, we have
QΠt(a; i, y) = Πt(a; i) for any y ∈ Ri−1.

The main idea of this proof is to separate the embedded time
points ek, k ≥ 1, from the times Bk :=

{
ek+1, . . . , ek+1−1

}
between these points. In a first step, we show that for any k
and any t ∈ Bk

Πek(a; i)− βk ≤ Πt(a; i) ≤ Πek(a; i) + βk. (V.65)

As we assumed
∑∞
k=1 βk < ∞, we have limk→∞ βk = 0.

Convergence of the density as in (V.64) now follows, if we
can prove convergence at the embedded time points, i.e.

lim
k→∞

Πek(a; i) ∈ {0, 1}. (V.66)

This is shown in a second step.
To prove (V.65), we use the left-hand inequality of (V.3)

with q0 := Πek(a; i) to obtain for any t ∈ Bk

Πt(a; i) ≥ Πek(a; i)

t∏
m=ek+1

(1− %m)

≥ Πek(a; i)(1− βk)

≥ Πek(a; i)− βk.

In a similar way, the second inequality in (V.65) follows from
the right-hand side of (V.3).

To prove (V.66), we proceed as in the proof of Lemma 12
but restricted to the embedded times ek: we first show that
with probability one, w(a; i,Xek−1) will eventually become
monotonic (step (MonW) in Lemma 12) and then deduce
convergence of the density Πek(a; i) (step (ConvQ).

We abbreviate Ŵk := w(a; i,Xek−1), and define Ẑ(k) =
Ŵk − Ŵk−1 = w(a; i,Xek−1) − w(a; i,Xek−1−1). Let M̂u,
with u ∈ N, be the u-th k such that

Ẑ(k + 1)Ẑ(k) < 0.

Note that M̂u ≥ u. We show that P(∃u ∈ N M̂u =∞) = 1
using the approach of (V.41) - (V.42). Therefore we have to
show, as in (V.45), that there is a lower bound κ > 0 such
that for all d ≥ u and u large enough

P
[
M̂u+1 =∞ | M̂u = d, Ẑ(d+ 1) < 0] ≥ κ > 0, (V.67)

and similarly for Ẑ(d+ 1) > 0.
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To prove (V.67) as in Lemma 12, we need an analogue to
the basic recursion (II.7) for Πek(a; i), which we are going
to derive now. Let %̂k := %ek , then we can show that

(1−%̂k+1)Πek(a; i) + %̂k+1Ŵk+1 − (1− %̂k+1)βk (V.68)
≤ Πek+1

(a; i)

≤ (1− %̂k+1)Πek(a; i) + %̂k+1Ŵk+1 + (1− %̂k+1)βk.

To prove (V.68), we use the basic recursion (II.7) and the
right-hand side of (V.65) to obtain

Πek+1
(a; i) = (1− %̂k+1)Πek+1−1(a; i) + %̂k+1Ŵk+1

≤ (1− %̂k+1)
[
Πek(a; i) + βk

]
+ %̂k+1Ŵk+1

= (1− %̂k+1)Πek(a; i) + %̂k+1Ŵk+1 + (1− %̂k+1)βk.

In a similar way, from the left-hand inequality of (V.65), we
can prove the left-hand inequality of (V.68).

An iteration of (V.68) allows to give bounds on Πek+m in
terms of Πek for the case of constant Ŵk+l = ŵ ∈ [0, 1]
for l = 1, . . . ,m. More precisely, we obtain from (V.68) and
%̂k ≥ % > 0

ŵ + (Πek(a; i)− ŵ)

m∏
l=1

(1− %̂k+l)−
m∑
j=1

βk+m−j(1− %)j

≤ Πek+m(a; i) ≤ (V.69)

ŵ + (Πek(a; i)− ŵ)

m∏
l=1

(1− %̂k+l) +

m∑
j=1

βk+m−j(1− %)j .

The lengthy but simple proof of (V.69) is omitted. Combining
(V.65) and (V.69) we can now bound Πt(a; i) in terms of
Πek for all t ∈ Bk+m in the case that Ŵk+l ≡ ŵ for all
l = 1, . . . ,m:

ŵ + (Πek(a; i)− ŵ)

m∏
l=1

(1− %̂k+l)−
m∑
j=0

βk+m−j(1− %)j

≤ Πt(a; i) ≤ (V.70)

ŵ + (Πek(a; i)− ŵ)

m∏
l=1

(1− %̂k+l) +

m∑
j=0

βk+m−j(1− %)j .

We now return to the problem of bounding the probability in
(V.67) from below. Note, that under the condition M̂u = d
and Ẑ(d + 1) < 0, the event Ŵd+1+l ≡ 0 for all l ≥ 1
implies M̂u+1 =∞. In this case we obtain from (V.70) with
ŵ := 0, k := d+ 1, for any t ∈ Bd+1+m

Πt(a; i) (V.71)

≤ Πed+1
(a; i)

m∏
l=1

(1− %̂d+1+l) +

m∑
j=0

βd+1+m−j(1− %)j

≤ (1− %)m +

m∑
j=0

βd+1+m−j(1− %)j .

Also, for Ẑ(d + 1) < 0 we have Ŵd+1 ≤ 1− 1
Nb

and, using
the basic recursion (II.7), we get

Πed+1
(a; i) ≤ 1− %̂d+1

Nb
≤ 1− %

Nb
,

and hence, by (V.65), for all t ∈ Bd+1

Πt(a; i) ≤ 1− %

Nb
+ βd+1. (V.72)

Since
∑∞
k=1 βk <∞, whenever u is large enough (remember

that d = M̂u ≥ u), the upper bounds in (V.71) and (V.72) are
smaller than 1.

We are now in a position to prove (V.67). We use the nota-
tion X

(·)
t (i) 6= a as abbreviation for the event [X

(n)
t (i) 6= a

for all n = 1, . . . , N ], M̂ for [M̂u = d, Ẑ(d + 1) < 0] and
Wm for [Ŵl = 0, l = d+ 2, . . . ,m− 1]. Under the condition
M̂, the event Ŵm = 0,m ≥ d+2 implies M̂u+1 =∞. Hence
we have for a, i fixed as at the beginning of the proof

P
[
M̂u+1 =∞ | M̂u = d, Ẑ(d+ 1) < 0] (V.73)

≥ P
[
Ŵm = 0,m ≥ d+ 2 | M̂]

= P
[
Ŵd+2 = 0 | M̂ ]

∞∏
m=d+3

P
[
Ŵm = 0 |Wm, M̂

]
≥ E

[[
1−Πed+2−1(a; i)

]N | M̂ ]
·
∞∏

m=d+3

E
[[

1−Πem−1(a; i)
]N ∣∣∣ Wm, M̂

]
.

For the first factor in (V.73), we get from (V.72)

E
[[

1−Πed+2−1(a; i)
]N | M̂u = d, Ẑ(d+ 1) < 0

]
(V.74)

≥
[
1−

(
1− %

Nb
+ βd+1

)]N
=
[ %
Nb
− βd+1

]N
,

which is positive for u large enough and d ≥ u, as
limk→∞ βk = 0. For the second factor in (V.73), we see from
(V.71)

∞∏
m=d+3

E
[[

1−Πem−1(a; i)
]N ∣∣∣ Wm, M̂

]
(V.75)

≥
∞∏
m=1

[
1− (1− %)m −

m∑
j=0

βd+1+m−j(1− %)j
]N

=:

∞∏
m=1

[
1− xm(d)

]N
.

Note that the time points ed+2+m−1 belong to Bd+1+m, hence
we may apply (V.71). We want to show that the product in
(V.75) has a positive lower bound that is independent of d for
u large enough (remember d ≥ u). We have

∞∏
m=1

(
1− xm(d)

)
= exp

(
−
∞∑
m=1

− ln
(
1− xm(d)

))
,

hence it is sufficient to show that there is ∆ < ∞ such that
for all u large enough and d ≥ u

∞∑
m=1

− ln
(
1− xm(d)

)
≤ ∆ <∞. (V.76)

We skip the purely technical proof here.
Together with the bound found in (V.74), we see that there

is common lower bound κ > 0 for (V.73) and all d ≥ u when
u is large enough. Therefore (V.67) holds for u large enough.
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In a very similar manner one can show that an inequality
like (V.73) holds for Ẑ(d+1) > 0. Hence we have shown that
for all d ≥ u and u ∈ N large enough

P[M̂u+1 =∞ | M̂u = d] ≥ κ > 0.

As in the proof of Lemma 12, we may now conclude that Ŵk

converges to a random variable V̂ . We now show that V̂ ∈
(0, 1) with probability 0, which implies that V̂ ∈ {0, 1}. As
the steps are very similar to (ConvW) in the proof of Lemma
12, we only sketch this proof.

P
[
V̂ ∈ (0, 1)

]
= P

(
lim
k→∞

Ŵk ∈ (0, 1)
)

(V.77)

≤ lim
k→∞

∞∏
m=1

[
1−P

[
X

(·)
ek+m−1 6= a

∣∣
Ŵk+l ∈ (0, 1), l = 0, . . . ,m− 1

]]
.

Under the condition Ŵk+l ∈ (0, 1), l = 0, . . . ,m−1, we have
in particular that Ŵk+l ≤ 1 − 1

Nb
, hence, from (V.69) with

ŵ := 1− 1
Nb

, we obtain for m ≥ 1

P
[
X

(·)
ek+m−1 6= a

∣∣Ŵk+l ∈ (0, 1), l = 0, . . . ,m− 1
]

(V.78)

≤
[ 1

Nb
+
(
1− 1

Nb

)
(1− %)m +

∞∑
j=0

βk−1+j

]N
.

For k large enough, this expression has an upper bound smaller
than one. Hence the product in (V.77) vanishes, and P(V̂ ∈
(0, 1)) = 0 holds.

Now assume that Ŵk = ŵ ∈ {0, 1} for k ≥ K for some
K ∈ N. Then we see from (V.69) that∣∣Πek+m(a; i)− ŵ

∣∣ ≤ (1− %)m +

∞∑
j=1

βk+j ,

which can be made arbitrarily small by choosing m and k
large enough. Hence we have limk→∞Πek(a; i) = ŵ, and, as
ŵ ∈ {0, 1} almost surely, the proof is complete.

Proof of Theorem 6: We first show that %t, defined in
(III.3), fulfills the condition of Lemma 13. We have ck =
ek+1 − ek, hence for k ≥ 1

1− βk =

ek+1−1∏
m=ek+1

(1− %m) =
((

1− xk
) 1
ck−1

)ck−1
= 1− xk

and
∑∞
k=0 βk =

∑∞
k=0 xk < ∞. From Lemma 13, we now

see that under this sequence, the density vector converges.
Next we show that %t also fulfills the sufficient condition for
P(τ <∞) = 1 of Theorem 1 a).

Observe that
∞∑
t=1

t∏
m=1

(1− %m)L =

∞∑
k=1

ek+1−1∑
t=ek

t∏
m=1

(1− %m)L

≥
∞∑
k=1

ck

ek+1−1∏
m=1

(1− %m)L

≥ χL ·
∞∑
k=1

ck(1− %)kL =∞

where we used that
∏k
l=1(1 − xl) ≥

∏∞
l=1(1 − xl) = χ > 0

for some χ > 0 as
∑∞
l=1 xl <∞.

VI. CONCLUSION

In this paper we extend the cross entropy optimization
model by a concept of feasibility and desirability of solutions.

We present a precise study of the asymptotic behaviour of
the sample process and the sampling density in this generalized
model. In particular, we show that depending on the smoothing
parameter %t, different types of convergence may appear. We
proved that for a constant smoothing rate, optimal solutions
may not be reached with a positive probability, but for a
standard test problem the runtime is polynomially bounded
with a probability converging to 1.

Our generalized cross entropy model covers standard ant
models, therefore our results also complement known results
on convergence of ant algorithms.

Future research will look at more general update mechanism
with the goal to include the best-so-far update into our model.
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